Goto

Collaborating Authors

 Seide, Frank


Non-Monotonic Attention-based Read/Write Policy Learning for Simultaneous Translation

arXiv.org Artificial Intelligence

Simultaneous or streaming machine translation generates translation while reading the input stream. These systems face a quality/latency trade-off, aiming to achieve high translation quality similar to non-streaming models with minimal latency. We propose an approach that efficiently manages this trade-off. By enhancing a pretrained non-streaming model, which was trained with a seq2seq mechanism and represents the upper bound in quality, we convert it into a streaming model by utilizing the alignment between source and target tokens. This alignment is used to learn a read/write decision boundary for reliable translation generation with minimal input. During training, the model learns the decision boundary through a read/write policy module, employing supervised learning on the alignment points (pseudo labels). The read/write policy module, a small binary classification unit, can control the quality/latency trade-off during inference. Experimental results show that our model outperforms several strong baselines and narrows the gap with the non-streaming baseline model.


Transcribing and Translating, Fast and Slow: Joint Speech Translation and Recognition

arXiv.org Artificial Intelligence

We propose the joint speech translation and recognition (JSTAR) model that leverages the fast-slow cascaded encoder architecture for simultaneous end-to-end automatic speech recognition (ASR) and speech translation (ST). The model is transducer-based and uses a multi-objective training strategy that optimizes both ASR and ST objectives simultaneously. This allows JSTAR to produce high-quality streaming ASR and ST results. We apply JSTAR in a bilingual conversational speech setting with smart-glasses, where the model is also trained to distinguish speech from different directions corresponding to the wearer and a conversational partner. Different model pre-training strategies are studied to further improve results, including training of a transducer-based streaming machine translation (MT) model for the first time and applying it for parameter initialization of JSTAR. We demonstrate superior performances of JSTAR compared to a strong cascaded ST model in both BLEU scores and latency.


Efficient Streaming LLM for Speech Recognition

arXiv.org Artificial Intelligence

Recent works have shown that prompting large language models with audio encodings can unlock speech recognition capabilities. However, existing techniques do not scale efficiently, especially while handling long form streaming audio inputs -- not only do they extrapolate poorly beyond the audio length seen during training, but they are also computationally inefficient due to the quadratic cost of attention. In this work, we introduce SpeechLLM-XL, a linear scaling decoder-only model for streaming speech recognition. We process audios in configurable chunks using limited attention window for reduced computation, and the text tokens for each audio chunk are generated auto-regressively until an EOS is predicted. During training, the transcript is segmented into chunks, using a CTC forced alignment estimated from encoder output. SpeechLLM-XL with 1.28 seconds chunk size achieves 2.7%/6.7% WER on LibriSpeech test clean/other, and it shows no quality degradation on long form utterances 10x longer than the training utterances.


Navigating the Minefield of MT Beam Search in Cascaded Streaming Speech Translation

arXiv.org Artificial Intelligence

We adapt the well-known beam-search algorithm for machine translation to operate in a cascaded real-time speech translation system. This proved to be more complex than initially anticipated, due to four key challenges: (1) real-time processing of intermediate and final transcriptions with incomplete words from ASR, (2) emitting intermediate and final translations with minimal user perceived latency, (3) handling beam search hypotheses that have unequal length and different model state, and (4) handling sentence boundaries. Previous work in the field of simultaneous machine translation only implemented greedy decoding. We present a beam-search realization that handles all of the above, providing guidance through the minefield of challenges. Our approach increases the BLEU score by 1 point compared to greedy search, reduces the CPU time by up to 40% and character flicker rate by 20+% compared to a baseline heuristic that just retranslates input repeatedly.


Speech ReaLLM -- Real-time Streaming Speech Recognition with Multimodal LLMs by Teaching the Flow of Time

arXiv.org Artificial Intelligence

We introduce Speech ReaLLM, a new ASR architecture that marries "decoder-only" ASR with the RNN-T to make multimodal LLM architectures capable of real-time streaming. This is the first "decoder-only" ASR architecture designed to handle continuous audio without explicit end-pointing. Speech ReaLLM is a special case of the more general ReaLLM ("real-time LLM") approach, also introduced here for the first time. The idea is inspired by RNN-T: Instead of generating a response only at the end of a user prompt, generate after every input token received in real time (it is often empty). On Librispeech "test", an 80M Speech ReaLLM achieves WERs of 3.0% and 7.4% in real time (without an external LM or auxiliary loss). This is only slightly above a 3x larger Attention-Encoder-Decoder baseline. We also show that this way, an LLM architecture can learn to represent and reproduce the flow of time; and that a pre-trained 7B LLM can be fine-tuned to do reasonably well on this task.


Effective internal language model training and fusion for factorized transducer model

arXiv.org Artificial Intelligence

The internal language model (ILM) of the neural transducer has been widely studied. In most prior work, it is mainly used for estimating the ILM score and is subsequently subtracted during inference to facilitate improved integration with external language models. Recently, various of factorized transducer models have been proposed, which explicitly embrace a standalone internal language model for non-blank token prediction. However, even with the adoption of factorized transducer models, limited improvement has been observed compared to shallow fusion. In this paper, we propose a novel ILM training and decoding strategy for factorized transducer models, which effectively combines the blank, acoustic and ILM scores. Our experiments show a 17% relative improvement over the standard decoding method when utilizing a well-trained ILM and the proposed decoding strategy on LibriSpeech datasets. Furthermore, when compared to a strong RNN-T baseline enhanced with external LM fusion, the proposed model yields a 5.5% relative improvement on general-sets and an 8.9% WER reduction for rare words. The proposed model can achieve superior performance without relying on external language models, rendering it highly efficient for production use-cases. To further improve the performance, we propose a novel and memory-efficient ILM-fusion-aware minimum word error rate (MWER) training method which improves ILM integration significantly.


DISGO: Automatic End-to-End Evaluation for Scene Text OCR

arXiv.org Artificial Intelligence

This paper discusses the challenges of optical character recognition (OCR) on natural scenes, which is harder than OCR on documents due to the wild content and various image backgrounds. We propose to uniformly use word error rates (WER) as a new measurement for evaluating scene-text OCR, both end-to-end (e2e) performance and individual system component performances. Particularly for the e2e metric, we name it DISGO WER as it considers Deletion, Insertion, Substitution, and Grouping/Ordering errors. Finally we propose to utilize the concept of super blocks to automatically compute BLEU scores for e2e OCR machine translation. The small SCUT public test set is used to demonstrate WER performance by a modularized OCR system.