Not enough data to create a plot.
Try a different view from the menu above.
Sebastiani, Roberto
Entailment vs. Verification for Partial-assignment Satisfiability and Enumeration
Sebastiani, Roberto
Many procedures for SA T -related problems, in particular for those requiring the complete enumeration of satisfying truth assignments, rely their efficiency and effectiveness on the detection of (possibly small) partial assignments satisfying an input formula. Surprisingly, there seems to be no unique universally-agreed definition of formula satisfaction by a partial assignment in the literature. In this paper we analyze in deep the issue of satisfaction by partial assignments, raising a flag about some ambiguities and subtleties of this concept, and investigating their practical consequences. We identify two alternative notions that are implicitly used in the literature, namely verification and entailment, which coincide if applied to CNF formulas but differ and present complementary properties if applied to non-CNF or to existentially-quantified formulas. We show that, although the former is easier to check and as such is implicitly used by most current search procedures, the latter has better theoretical properties, and can improve the efficiency and effectiveness of enumeration procedures. 1 Introduction Motivations.
Canonical Decision Diagrams Modulo Theories
Michelutti, Massimo, Masina, Gabriele, Spallitta, Giuseppe, Sebastiani, Roberto
Decision diagrams (DDs) are powerful tools to represent effectively propositional formulas, which are largely used in many domains, in particular in formal verification and in knowledge compilation. Some forms of DDs (e.g., OBDDs, SDDs) are canonical, that is, (under given conditions on the atom list) they univocally represent equivalence classes of formulas. Given the limited expressiveness of propositional logic, a few attempts to leverage DDs to SMT level have been presented in the literature. Unfortunately, these techniques still suffer from some limitations: most procedures are theory-specific; some produce theory DDs (T-DDs) which do not univocally represent T-valid formulas or T-inconsistent formulas; none of these techniques provably produces theory-canonical T-DDs, which (under given conditions on the T-atom list) univocally represent T-equivalence classes of formulas. Also, these procedures are not easy to implement, and very few implementations are actually available. In this paper, we present a novel very-general technique to leverage DDs to SMT level, which has several advantages: it is very easy to implement on top of an AllSMT solver and a DD package, which are used as blackboxes; it works for every form of DDs and every theory, or combination thereof, supported by the AllSMT solver; it produces theory-canonical T-DDs if the propositional DD is canonical. We have implemented a prototype tool for both T-OBDDs and T-SDDs on top of OBDD and SDD packages and the MathSAT SMT solver. Some preliminary empirical evaluation supports the effectiveness of the approach.
A Unified Framework for Probabilistic Verification of AI Systems via Weighted Model Integration
Morettin, Paolo, Passerini, Andrea, Sebastiani, Roberto
However, the complexity and versatility of modern AI systems calls for a unified framework to assess their trustworthiness, which cannot The probabilistic formal verification (PFV) of be captured by a single evaluation metric or formal property. AI systems is in its infancy. So far, approaches This papers aims to introduce such a framework. We have been limited to ad-hoc algorithms for specific show how by leveraging the Weighted Model Integration classes of models and/or properties. We propose (WMI) [Belle et al., 2015] formalism, it is possible to devise a unifying framework for the PFV of AI systems a unified formulation for the probabilistic verification of based on Weighted Model Integration (WMI), combinatorial AI systems. Broadly speaking, WMI is the which allows to frame the problem in very general task of computing probabilities of arbitrary combinations terms. Crucially, this reduction enables the verification of logical and algebraic constraints given a structured joint of many properties of interest, like fairness, distribution over both continuous and discrete variables.
Enhancing SMT-based Weighted Model Integration by Structure Awareness
Spallitta, Giuseppe, Masina, Gabriele, Morettin, Paolo, Passerini, Andrea, Sebastiani, Roberto
The development of efficient exact and approximate algorithms for probabilistic inference is a long-standing goal of artificial intelligence research. Whereas substantial progress has been made in dealing with purely discrete or purely continuous domains, adapting the developed solutions to tackle hybrid domains, characterised by discrete and continuous variables and their relationships, is highly non-trivial. Weighted Model Integration (WMI) recently emerged as a unifying formalism for probabilistic inference in hybrid domains. Despite a considerable amount of recent work, allowing WMI algorithms to scale with the complexity of the hybrid problem is still a challenge. In this paper we highlight some substantial limitations of existing state-of-the-art solutions, and develop an algorithm that combines SMT-based enumeration, an efficient technique in formal verification, with an effective encoding of the problem structure. This allows our algorithm to avoid generating redundant models, resulting in drastic computational savings. Additionally, we show how SMT-based approaches can seamlessly deal with different integration techniques, both exact and approximate, significantly expanding the set of problems that can be tackled by WMI technology. An extensive experimental evaluation on both synthetic and real-world datasets confirms the substantial advantage of the proposed solution over existing alternatives. The application potential of this technology is further showcased on a prototypical task aimed at verifying the fairness of probabilistic programs.
Are You Satisfied by This Partial Assignment?
Sebastiani, Roberto
Many procedures for SAT and SAT-related problems -- in particular for those requiring the complete enumeration of satisfying truth assignments -- rely their efficiency on the detection of partial assignments satisfying an input formula. In this paper we analyze the notion of partial-assignment satisfiability -- in particular when dealing with non-CNF and existentially-quantified formulas -- raising a flag about the ambiguities and subtleties of this concept, and investigating their practical consequences. This may drive the development of more effective assignment-enumeration algorithms.
Multi-Object Reasoning with Constrained Goal Models
Nguyen, Chi Mai, Sebastiani, Roberto, Giorgini, Paolo, Mylopoulos, John
Goal models have been widely used in Computer Science to represent software requirements, business objectives, and design qualities. Existing goal modelling techniques, however, have shown limitations of expressiveness and/or tractability in coping with complex real-world problems. In this work, we exploit advances in automated reasoning technologies, notably Satisfiability and Optimization Modulo Theories (SMT/OMT), and we propose and formalize: (i) an extended modelling language for goals, namely the Constrained Goal Model (CGM), which makes explicit the notion of goal refinement and of domain assumption, allows for expressing preferences between goals and refinements, and allows for associating numerical attributes to goals and refinements for defining constraints and optimization goals over multiple objective functions, refinements and their numerical attributes; (ii) a novel set of automated reasoning functionalities over CGMs, allowing for automatically generating suitable refinements of input CGMs, under user-specified assumptions and constraints, that also maximize preferences and optimize given objective functions. We have implemented these modelling and reasoning functionalities in a tool, named CGM-Tool, using the OMT solver OptiMathSAT as automated reasoning backend. Moreover, we have conducted an experimental evaluation on large CGMs to support the claim that our proposal scales well for goal models with thousands of elements.
Hybrid SRL with Optimization Modulo Theories
Teso, Stefano, Sebastiani, Roberto, Passerini, Andrea
Generally speaking, the goal of constructive learning could be seen as, given an example set of structured objects, to generate novel objects with similar properties. From a statistical-relational learning (SRL) viewpoint, the task can be interpreted as a constraint satisfaction problem, i.e. the generated objects must obey a set of soft constraints, whose weights are estimated from the data. Traditional SRL approaches rely on (finite) First-Order Logic (FOL) as a description language, and on MAX-SAT solvers to perform inference. Alas, FOL is unsuited for con- structive problems where the objects contain a mixture of Boolean and numerical variables. It is in fact difficult to implement, e.g. linear arithmetic constraints within the language of FOL. In this paper we propose a novel class of hybrid SRL methods that rely on Satisfiability Modulo Theories, an alternative class of for- mal languages that allow to describe, and reason over, mixed Boolean-numerical objects and constraints. The resulting methods, which we call Learning Mod- ulo Theories, are formulated within the structured output SVM framework, and employ a weighted SMT solver as an optimization oracle to perform efficient in- ference and discriminative max margin weight learning. We also present a few examples of constructive learning applications enabled by our method.
Automated Reasoning in Modal and Description Logics via SAT Encoding: the Case Study of K(m)/ALC-Satisfiability
Sebastiani, Roberto, Vescovi, Michele
In the last two decades, modal and description logics have been applied to numerous areas of computer science, including knowledge representation, formal verification, database theory, distributed computing and, more recently, semantic web and ontologies. For this reason, the problem of automated reasoning in modal and description logics has been thoroughly investigated. In particular, many approaches have been proposed for efficiently handling the satisfiability of the core normal modal logic K(m), and of its notational variant, the description logic ALC. Although simple in structure, K(m)/ALC is computationally very hard to reason on, its satisfiability being PSPACE-complete. In this paper we start exploring the idea of performing automated reasoning tasks in modal and description logics by encoding them into SAT, so that to be handled by state-of-the-art SAT tools; as with most previous approaches, we begin our investigation from the satisfiability in K(m). We propose an efficient encoding, and we test it on an extensive set of benchmarks, comparing the approach with the main state-of-the-art tools available. Although the encoding is necessarily worst-case exponential, from our experiments we notice that, in practice, this approach can handle most or all the problems which are at the reach of the other approaches, with performances which are comparable with, or even better than, those of the current state-of-the-art tools.
Optimization in SMT with LA(Q) Cost Functions
Sebastiani, Roberto, Tomasi, Silvia
In the contexts of automated reasoning and formal verification, important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, very few work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of LA(Q) cost functions, combining SMT with standard minimization techniques. We have implemented the proposed approach within the MathSAT SMT solver. Due to the lack of competitors in AR and SMT domains, we experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.