Goto

Collaborating Authors

 Sebastian, Meera


Socially-Aware Navigation: Action Discrimination to Select Appropriate Behavior

AAAI Conferences

In this paper, we study if modeling can help discriminate actions which in turn can be used to select an appropriate behavior for a mobile robot. For human-human interaction, significant social and communicative information can be derived from interpersonal distance between two or more people. If Human-Robot Interaction reflects this human-human interaction property, then interpersonal distance between a human and a robot may contain similar social and communicative information. An effective robot's actions, including actions associated with interpersonal distance, must be suitable for a given social circumstance. Studying interpersonal distance between a robot and a human is very important for assistive robots. We use autonomously detected features to develop such an interpersonal model using Gaussian Mixture Model (GMM) and demonstrate that such a learned model can discriminate different human actions. The proposed approach can be used in a socially-aware planner to weight trajectories and select actions that are socially appropriate for a given social situation.