Schwinn, Leo
A generative approach to LLM harmfulness detection with special red flag tokens
Xhonneux, Sophie, Dobre, David, Mofakhami, Mehrnaz, Schwinn, Leo, Gidel, Gauthier
Most safety training methods for large language models (LLMs) based on fine-tuning rely on dramatically changing the output distribution of the model when faced with a harmful request, shifting it from an unsafe answer to a refusal to respond. These methods inherently compromise model capabilities and might make auto-regressive models vulnerable to attacks that make likely an initial token of affirmative response. To avoid that, we propose to expand the model's vocabulary with a special token we call red flag token (
Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives
Schwinn, Leo, Scholten, Yan, Wollschläger, Tom, Xhonneux, Sophie, Casper, Stephen, Günnemann, Stephan, Gidel, Gauthier
Misaligned research objectives have considerably hindered progress in adversarial robustness research over the past decade. For instance, an extensive focus on optimizing target metrics, while neglecting rigorous standardized evaluation, has led researchers to pursue ad-hoc heuristic defenses that were seemingly effective. Yet, most of these were exposed as flawed by subsequent evaluations, ultimately contributing little measurable progress to the field. In this position paper, we illustrate that current research on the robustness of large language models (LLMs) risks repeating past patterns with potentially worsened real-world implications. To address this, we argue that realigned objectives are necessary for meaningful progress in adversarial alignment. To this end, we build on established cybersecurity taxonomy to formally define differences between past and emerging threat models that apply to LLMs. Using this framework, we illustrate that progress requires disentangling adversarial alignment into addressable sub-problems and returning to core academic principles, such as measureability, reproducibility, and comparability. Although the field presents significant challenges, the fresh start on adversarial robustness offers the unique opportunity to build on past experience while avoiding previous mistakes.
Fast Proxies for LLM Robustness Evaluation
Beyer, Tim, Schuchardt, Jan, Schwinn, Leo, Günnemann, Stephan
Evaluating the robustness of LLMs to adversarial attacks is crucial for safe deployment, yet current red-teaming methods are often prohibitively expensive. We compare the ability of fast proxy metrics to predict the real-world robustness of an LLM against a simulated attacker ensemble. This allows us to estimate a model's robustness to computationally expensive attacks without requiring runs of the attacks themselves. Specifically, we consider gradient-descent-based embedding-space attacks, prefilling attacks, and direct prompting. Even though direct prompting in particular does not achieve high ASR, we find that it and embedding-space attacks can predict attack success rates well, achieving $r_p=0.87$ (linear) and $r_s=0.94$ (Spearman rank) correlations with the full attack ensemble while reducing computational cost by three orders of magnitude.
A Probabilistic Perspective on Unlearning and Alignment for Large Language Models
Scholten, Yan, Günnemann, Stephan, Schwinn, Leo
Comprehensive evaluation of Large Language Models (LLMs) is an open research problem. Existing evaluations rely on deterministic point estimates generated via greedy decoding. However, we find that deterministic evaluations fail to capture the whole output distribution of a model, yielding inaccurate estimations of model capabilities. This is particularly problematic in critical contexts such as unlearning and alignment, where precise model evaluations are crucial. To remedy this, we introduce the first formal probabilistic evaluation framework in LLMs. Namely, we derive novel metrics with high-probability guarantees concerning the output distribution of a model. Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment. Through a case study focused on unlearning, we reveal that deterministic evaluations falsely indicate successful unlearning, whereas our probabilistic evaluations demonstrate that most if not all of the supposedly unlearned information remains accessible in these models. Additionally, we propose a novel unlearning loss based on entropy optimization and adaptive temperature scaling, which significantly improves unlearning in probabilistic settings on recent benchmarks. Our proposed shift from point estimates to probabilistic evaluations of output distributions represents an important step toward comprehensive evaluations of LLMs. Large Language Models (LLMs) are widely employed across various applications, from chatbots to code generation, relying on outputs generated through probabilistic decoding methods such as beam-search and multinominal sampling.
Extracting Unlearned Information from LLMs with Activation Steering
Seyitoğlu, Atakan, Kuvshinov, Aleksei, Schwinn, Leo, Günnemann, Stephan
An unintended consequence of the vast pretraining of Large Language Models (LLMs) is the verbatim memorization of fragments of their training data, which may contain sensitive or copyrighted information. In recent years, unlearning has emerged as a solution to effectively remove sensitive knowledge from models after training. Yet, recent work has shown that supposedly deleted information can still be extracted by malicious actors through various attacks. Still, current attacks retrieve sets of possible candidate generations and are unable to pinpoint the output that contains the actual target information. We propose activation steering as a method for exact information retrieval from unlearned LLMs. We introduce a novel approach to generating steering vectors, named Anonymized Activation Steering. Additionally, we develop a simple word frequency method to pinpoint the correct answer among a set of candidates when retrieving unlearned information. Our evaluation across multiple unlearning techniques and datasets demonstrates that activation steering successfully recovers general knowledge (e.g., widely known fictional characters) while revealing limitations in retrieving specific information (e.g., details about non-public individuals). Overall, our results demonstrate that exact information retrieval from unlearned models is possible, highlighting a severe vulnerability of current unlearning techniques.
Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting
Kollovieh, Marcel, Lienen, Marten, Lüdke, David, Schwinn, Leo, Günnemann, Stephan
Recent advancements in generative modeling, particularly diffusion models, have opened new directions for time series modeling, achieving state-of-the-art performance in forecasting and synthesis. However, the reliance of diffusion-based models on a simple, fixed prior complicates the generative process since the data and prior distributions differ significantly. We introduce TSFlow, a conditional flow matching (CFM) model for time series that simplifies the generative problem by combining Gaussian processes, optimal transport paths, and data-dependent prior distributions. By incorporating (conditional) Gaussian processes, TSFlow aligns the prior distribution more closely with the temporal structure of the data, enhancing both unconditional and conditional generation. Furthermore, we propose conditional prior sampling to enable probabilistic forecasting with an unconditionally trained model. In our experimental evaluation on eight real-world datasets, we demonstrate the generative capabilities of TSFlow, producing high-quality unconditional samples. Finally, we show that both conditionally and unconditionally trained models achieve competitive results in forecasting benchmarks, surpassing other methods on 6 out of 8 datasets. However, these models typically transform non-i.i.d. This can hinder the generative process and potentially limit the models' performance.
Relaxing Graph Transformers for Adversarial Attacks
Foth, Philipp, Gosch, Lukas, Geisler, Simon, Schwinn, Leo, Günnemann, Stephan
Existing studies have shown that Graph Neural Networks (GNNs) are vulnerable to adversarial attacks. Even though Graph Transformers (GTs) surpassed Message-Passing GNNs on several benchmarks, their adversarial robustness properties are unexplored. However, attacking GTs is challenging due to their Positional Encodings (PEs) and special attention mechanisms which can be difficult to differentiate. We overcome these challenges by targeting three representative architectures based on (1) random-walk PEs, (2) pair-wise-shortest-path PEs, and (3) spectral PEs - and propose the first adaptive attacks for GTs. We leverage our attacks to evaluate robustness to (a) structure perturbations on node classification; and (b) node injection attacks for (fake-news) graph classification. Our evaluation reveals that they can be catastrophically fragile and underlines our work's importance and the necessity for adaptive attacks.
Large-Scale Dataset Pruning in Adversarial Training through Data Importance Extrapolation
Nieth, Björn, Altstidl, Thomas, Schwinn, Leo, Eskofier, Björn
Their vulnerability to small, imperceptible attacks limits the adoption of deep learning models to real-world systems. Adversarial training has proven to be one of the most promising strategies against these attacks, at the expense of a substantial increase in training time. With the ongoing trend of integrating large-scale synthetic data this is only expected to increase even further. Thus, the need for data-centric approaches that reduce the number of training samples while maintaining accuracy and robustness arises. While data pruning and active learning are prominent research topics in deep learning, they are as of now largely unexplored in the adversarial training literature. We address this gap and propose a new data pruning strategy based on extrapolating data importance scores from a small set of data to a larger set. In an empirical evaluation, we demonstrate that extrapolation-based pruning can efficiently reduce dataset size while maintaining robustness.
Efficient Adversarial Training in LLMs with Continuous Attacks
Xhonneux, Sophie, Sordoni, Alessandro, Günnemann, Stephan, Gidel, Gauthier, Schwinn, Leo
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial training has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Efficient Time Series Processing for Transformers and State-Space Models through Token Merging
Götz, Leon, Kollovieh, Marcel, Günnemann, Stephan, Schwinn, Leo
Transformer architectures have shown promising results in time series processing. However, despite recent advances in subquadratic attention mechanisms or state-space models, processing very long sequences still imposes significant computational requirements. Token merging, which involves replacing multiple tokens with a single one calculated as their linear combination, has shown to considerably improve the throughput of vision transformer architectures while maintaining accuracy. In this work, we go beyond computer vision and perform the first investigations of token merging in time series analysis on both time series transformers and state-space models. To effectively scale token merging to long sequences, we introduce local merging, a domain-specific token merging algorithm that selectively combines tokens within a local neighborhood, adjusting the computational complexity from linear to quadratic based on the neighborhood size. Our comprehensive empirical evaluation demonstrates that token merging offers substantial computational benefits with minimal impact on accuracy across various models and datasets. On the recently proposed Chronos foundation model, we achieve accelerations up to 5400 % with only minor accuracy degradations.