Schwartz, William Robson
The Potential of Wearable Sensors for Assessing Patient Acuity in Intensive Care Unit (ICU)
Sena, Jessica, Mostafiz, Mohammad Tahsin, Zhang, Jiaqing, Davidson, Andrea, Bandyopadhyay, Sabyasachi, Yuanfang, Ren, Ozrazgat-Baslanti, Tezcan, Shickel, Benjamin, Loftus, Tyler, Schwartz, William Robson, Bihorac, Azra, Rashidi, Parisa
Acuity assessments are vital in critical care settings to provide timely interventions and fair resource allocation. Traditional acuity scores rely on manual assessments and documentation of physiological states, which can be time-consuming, intermittent, and difficult to use for healthcare providers. Furthermore, such scores do not incorporate granular information such as patients' mobility level, which can indicate recovery or deterioration in the ICU. We hypothesized that existing acuity scores could be potentially improved by employing Artificial Intelligence (AI) techniques in conjunction with Electronic Health Records (EHR) and wearable sensor data. In this study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for developing an AI-driven acuity assessment score. Accelerometry data were collected from 86 patients wearing accelerometers on their wrists in an academic hospital setting. The data was analyzed using five deep neural network models: VGG, ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These models outperformed a rule-based clinical score (SOFA= Sequential Organ Failure Assessment) used as a baseline, particularly regarding the precision, sensitivity, and F1 score. The results showed that while a model relying solely on accelerometer data achieved limited performance (AUC 0.50, Precision 0.61, and F1-score 0.68), including demographic information with the accelerometer data led to a notable enhancement in performance (AUC 0.69, Precision 0.75, and F1-score 0.67). This work shows that the combination of mobility and patient information can successfully differentiate between stable and unstable states in critically ill patients.
Open-set Face Recognition with Neural Ensemble, Maximal Entropy Loss and Feature Augmentation
Vareto, Rafael Henrique, Gรผnther, Manuel, Schwartz, William Robson
Open-set face recognition refers to a scenario in which biometric systems have incomplete knowledge of all existing subjects. Therefore, they are expected to prevent face samples of unregistered subjects from being identified as previously enrolled identities. This watchlist context adds an arduous requirement that calls for the dismissal of irrelevant faces by focusing mainly on subjects of interest. As a response, this work introduces a novel method that associates an ensemble of compact neural networks with a margin-based cost function that explores additional samples. Supplementary negative samples can be obtained from external databases or synthetically built at the representation level in training time with a new mix-up feature augmentation approach. Deep neural networks pre-trained on large face datasets serve as the preliminary feature extraction module. We carry out experiments on well-known LFW and IJB-C datasets where results show that the approach is able to boost closed and open-set identification rates.
Open-set Face Recognition using Ensembles trained on Clustered Data
Vareto, Rafael Henrique, Schwartz, William Robson
Open-set face recognition describes a scenario where unknown subjects, unseen during the training stage, appear on test time. Not only it requires methods that accurately identify individuals of interest, but also demands approaches that effectively deal with unfamiliar faces. This work details a scalable open-set face identification approach to galleries composed of hundreds and thousands of subjects. It is composed of clustering and an ensemble of binary learning algorithms that estimates when query face samples belong to the face gallery and then retrieves their correct identity. The approach selects the most suitable gallery subjects and uses the ensemble to improve prediction performance. We carry out experiments on well-known LFW and YTF benchmarks. Results show that competitive performance can be achieved even when targeting scalability.
The SWAX Benchmark: Attacking Biometric Systems with Wax Figures
Vareto, Rafael Henrique, Sandanha, Araceli Marcia, Schwartz, William Robson
A face spoofing attack occurs when an intruder attempts to impersonate someone who carries a gainful authentication clearance. It is a trending topic due to the increasing demand for biometric authentication on mobile devices, high-security areas, among others. This work introduces a new database named Sense Wax Attack dataset (SWAX), comprised of real human and wax figure images and videos that endorse the problem of face spoofing detection. The dataset consists of more than 1800 face images and 110 videos of 55 people/waxworks, arranged in training, validation and test sets with a large range in expression, illumination and pose variations. Experiments performed with baseline methods show that despite the progress in recent years, advanced spoofing methods are still vulnerable to high-quality violation attempts.
A Content-Based Late Fusion Approach Applied to Pedestrian Detection
Sena, Jessica, Jordao, Artur, Schwartz, William Robson
The variety of pedestrians detectors proposed in recent years has encouraged some works to fuse pedestrian detectors to achieve a more accurate detection. The intuition behind is to combine the detectors based on its spatial consensus. We propose a novel method called Content-Based Spatial Consensus (CSBC), which, in addition to relying on spatial consensus, considers the content of the detection windows to learn a weighted-fusion of pedestrian detectors. The result is a reduction in false alarms and an enhancement in the detection. In this work, we also demonstrate that there is small influence of the feature used to learn the contents of the windows of each detector, which enables our method to be efficient even employing simple features. The CSBC overcomes state-of-the-art fusion methods in the ETH dataset and in the Caltech dataset. Particularly, our method is more efficient since fewer detectors are necessary to achieve expressive results.