Schwartz, Roy
On Pruning State-Space LLMs
Ghattas, Tamer, Hassid, Michael, Schwartz, Roy
Recent work proposed state-space models (SSMs) as an efficient alternative to transformer-based LLMs. Can these models be pruned to further reduce their computation costs? We adapt several pruning methods to the SSM structure, and apply them to four SSM-based LLMs across multiple tasks. We find that such models are quite robust to some pruning methods (e.g. WANDA), while using other methods lead to fast performance degradation.
Accelerating LLM Inference with Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies
Timor, Nadav, Mamou, Jonathan, Korat, Daniel, Berchansky, Moshe, Pereg, Oren, Jain, Gaurav, Schwartz, Roy, Wasserblat, Moshe, Harel, David
Accelerating the inference of large language models (LLMs) is a critical challenge in generative AI. Speculative decoding (SD) methods offer substantial efficiency gains by generating multiple tokens using a single target forward pass. However, existing SD approaches require the drafter and target models to share the same vocabulary, thus limiting the pool of possible drafters, often necessitating the training of a drafter from scratch. We present three new SD methods that remove this shared-vocabulary constraint. All three methods preserve the target distribution (i.e., they are lossless) and work with off-the-shelf models without requiring additional training or modifications. Empirically, on summarization, programming, and long-context tasks, our algorithms achieve significant speedups over standard autoregressive decoding. By enabling any off-the-shelf model to serve as drafter and requiring no retraining, this work substantially broadens the applicability of the SD framework in practice.
From Tokens to Words: On the Inner Lexicon of LLMs
Kaplan, Guy, Oren, Matanel, Reif, Yuval, Schwartz, Roy
Natural language is composed of words, but modern LLMs process sub-words as input. A natural question raised by this discrepancy is whether LLMs encode words internally, and if so how. We present evidence that LLMs engage in an intrinsic detokenization process, where sub-word sequences are combined into coherent word representations. Our experiments show that this process takes place primarily within the early and middle layers of the model. They also show that it is robust to non-morphemic splits, typos and perhaps importantly-to out-of-vocabulary words: when feeding the inner representation of such words to the model as input vectors, it can "understand" them despite never seeing them during training. Our findings suggest that LLMs maintain a latent vocabulary beyond the tokenizer's scope. These insights provide a practical, finetuning-free application for expanding the vocabulary of pre-trained models. By enabling the addition of new vocabulary words, we reduce input length and inference iterations, which reduces both space and model latency, with little to no loss in model accuracy.
Dynamic Speculation Lookahead Accelerates Speculative Decoding of Large Language Models
Mamou, Jonathan, Pereg, Oren, Korat, Daniel, Berchansky, Moshe, Timor, Nadav, Wasserblat, Moshe, Schwartz, Roy
Speculative decoding is commonly used for reducing the inference latency of large language models. Its effectiveness depends highly on the speculation lookahead (SL)--the number of tokens generated by the draft model at each iteration. In this work we show that the common practice of using the same SL for all iterations (static SL) is suboptimal. We introduce DISCO (DynamIc SpeCulation lookahead Optimization), a novel method for dynamically selecting the SL. Our experiments Figure 1: An illustration of a single speculative decoding with four datasets show that DISCO reaches an iteration with Speculation Lookahead (SL) = 5. average speedup of 10% compared to the best Given a prompt t
What Can Natural Language Processing Do for Peer Review?
Kuznetsov, Ilia, Afzal, Osama Mohammed, Dercksen, Koen, Dycke, Nils, Goldberg, Alexander, Hope, Tom, Hovy, Dirk, Kummerfeld, Jonathan K., Lauscher, Anne, Leyton-Brown, Kevin, Lu, Sheng, Mausam, null, Mieskes, Margot, Névéol, Aurélie, Pruthi, Danish, Qu, Lizhen, Schwartz, Roy, Smith, Noah A., Solorio, Thamar, Wang, Jingyan, Zhu, Xiaodan, Rogers, Anna, Shah, Nihar B., Gurevych, Iryna
The number of scientific articles produced every year is growing rapidly. Providing quality control over them is crucial for scientists and, ultimately, for the public good. In modern science, this process is largely delegated to peer review -- a distributed procedure in which each submission is evaluated by several independent experts in the field. Peer review is widely used, yet it is hard, time-consuming, and prone to error. Since the artifacts involved in peer review -- manuscripts, reviews, discussions -- are largely text-based, Natural Language Processing has great potential to improve reviewing. As the emergence of large language models (LLMs) has enabled NLP assistance for many new tasks, the discussion on machine-assisted peer review is picking up the pace. Yet, where exactly is help needed, where can NLP help, and where should it stand aside? The goal of our paper is to provide a foundation for the future efforts in NLP for peer-reviewing assistance. We discuss peer review as a general process, exemplified by reviewing at AI conferences. We detail each step of the process from manuscript submission to camera-ready revision, and discuss the associated challenges and opportunities for NLP assistance, illustrated by existing work. We then turn to the big challenges in NLP for peer review as a whole, including data acquisition and licensing, operationalization and experimentation, and ethical issues. To help consolidate community efforts, we create a companion repository that aggregates key datasets pertaining to peer review. Finally, we issue a detailed call for action for the scientific community, NLP and AI researchers, policymakers, and funding bodies to help bring the research in NLP for peer review forward. We hope that our work will help set the agenda for research in machine-assisted scientific quality control in the age of AI, within the NLP community and beyond.
Beyond Performance: Quantifying and Mitigating Label Bias in LLMs
Reif, Yuval, Schwartz, Roy
Large language models (LLMs) have shown remarkable adaptability to diverse tasks, by leveraging context prompts containing instructions, or minimal input-output examples. However, recent work revealed they also exhibit label bias -- an undesirable preference toward predicting certain answers over others. Still, detecting and measuring this bias reliably and at scale has remained relatively unexplored. In this study, we evaluate different approaches to quantifying label bias in a model's predictions, conducting a comprehensive investigation across 279 classification tasks and ten LLMs. Our investigation reveals substantial label bias in models both before and after debiasing attempts, as well as highlights the importance of outcomes-based evaluation metrics, which were not previously used in this regard. We further propose a novel label bias calibration method tailored for few-shot prompting, which outperforms recent calibration approaches for both improving performance and mitigating label bias. Our results emphasize that label bias in the predictions of LLMs remains a barrier to their reliability.
The Larger the Better? Improved LLM Code-Generation via Budget Reallocation
Hassid, Michael, Remez, Tal, Gehring, Jonas, Schwartz, Roy, Adi, Yossi
It is a common belief that large language models (LLMs) are better than smaller-sized ones. However, larger models also require significantly more time and compute during inference. This begs the question: what happens when both models operate under the same budget? (e.g., compute, run-time). To address this question, we analyze code generation LLMs of various sizes and make comparisons such as running a 70B model once vs. generating five outputs from a 13B model and selecting one. Our findings reveal that, in a standard unit-test setup, the repeated use of smaller models can yield consistent improvements, with gains of up to 15% across five tasks. On the other hand, in scenarios where unit-tests are unavailable, a ranking-based selection of candidates from the smaller model falls short of the performance of a single output from larger ones. Our results highlight the potential of using smaller models instead of larger ones, and the importance of studying approaches for ranking LLM outputs.
Textually Pretrained Speech Language Models
Hassid, Michael, Remez, Tal, Nguyen, Tu Anh, Gat, Itai, Conneau, Alexis, Kreuk, Felix, Copet, Jade, Defossez, Alexandre, Synnaeve, Gabriel, Dupoux, Emmanuel, Schwartz, Roy, Adi, Yossi
Speech language models (SpeechLMs) process and generate acoustic data only, without textual supervision. In this work, we propose TWIST, a method for training SpeechLMs using a warm-start from a pretrained textual language models. We show using both automatic and human evaluations that TWIST outperforms a cold-start SpeechLM across the board. We empirically analyze the effect of different model design choices such as the speech tokenizer, the pretrained textual model, and the dataset size. We find that model and dataset scale both play an important role in constructing better-performing SpeechLMs. Based on our observations, we present the largest (to the best of our knowledge) SpeechLM both in terms of number of parameters and training data. We additionally introduce two spoken versions of the StoryCloze textual benchmark to further improve model evaluation and advance future research in the field. We make speech samples, code and models publicly available: https://pages.cs.huji.ac.il/adiyoss-lab/twist/ .
Transformers are Multi-State RNNs
Oren, Matanel, Hassid, Michael, Adi, Yossi, Schwartz, Roy
Transformers are considered conceptually different compared to the previous generation of state-of-the-art NLP models - recurrent neural networks (RNNs). In this work, we demonstrate that decoder-only transformers can in fact be conceptualized as infinite multi-state RNNs - an RNN variant with unlimited hidden state size. We further show that pretrained transformers can be converted into $\textit{finite}$ multi-state RNNs by fixing the size of their hidden state. We observe that several existing transformers cache compression techniques can be framed as such conversion policies, and introduce a novel policy, TOVA, which is simpler compared to these policies. Our experiments with several long range tasks indicate that TOVA outperforms all other baseline policies, while being nearly on par with the full (infinite) model, and using in some cases only $\frac{1}{8}$ of the original cache size. Our results indicate that transformer decoder LLMs often behave in practice as RNNs. They also lay out the option of mitigating one of their most painful computational bottlenecks - the size of their cache memory. We publicly release our code at https://github.com/schwartz-lab-NLP/TOVA.
Surveying (Dis)Parities and Concerns of Compute Hungry NLP Research
Lee, Ji-Ung, Puerto, Haritz, van Aken, Betty, Arase, Yuki, Forde, Jessica Zosa, Derczynski, Leon, Rücklé, Andreas, Gurevych, Iryna, Schwartz, Roy, Strubell, Emma, Dodge, Jesse
Many recent improvements in NLP stem from the development and use of large pre-trained language models (PLMs) with billions of parameters. Large model sizes makes computational cost one of the main limiting factors for training and evaluating such models; and has raised severe concerns about the sustainability, reproducibility, and inclusiveness for researching PLMs. These concerns are often based on personal experiences and observations. However, there had not been any large-scale surveys that investigate them. In this work, we provide a first attempt to quantify these concerns regarding three topics, namely, environmental impact, equity, and impact on peer reviewing. By conducting a survey with 312 participants from the NLP community, we capture existing (dis)parities between different and within groups with respect to seniority, academia, and industry; and their impact on the peer reviewing process. For each topic, we provide an analysis and devise recommendations to mitigate found disparities, some of which already successfully implemented. Finally, we discuss additional concerns raised by many participants in free-text responses.