Goto

Collaborating Authors

 Schwartz, Idan


Single Image Iterative Subject-driven Generation and Editing

arXiv.org Artificial Intelligence

Personalizing image generation and editing is particularly challenging when we only have a few images of the subject, or even a single image. A common approach to personalization is concept learning, which can integrate the subject into existing models relatively quickly, but produces images whose quality tends to deteriorate quickly when the number of subject images is small. Quality can be improved by pre-training an encoder, but training restricts generation to the training distribution, and is time consuming. It is still an open hard challenge to personalize image generation and editing from a single image without training. Here, we present SISO, a novel, training-free approach based on optimizing a similarity score with an input subject image. More specifically, SISO iteratively generates images and optimizes the model based on loss of similarity with the given subject image until a satisfactory level of similarity is achieved, allowing plug-and-play optimization to any image generator. We evaluated SISO in two tasks, image editing and image generation, using a diverse data set of personal subjects, and demonstrate significant improvements over existing methods in image quality, subject fidelity, and background preservation.


Improving Visual Commonsense in Language Models via Multiple Image Generation

arXiv.org Artificial Intelligence

Commonsense reasoning is fundamentally based on multimodal knowledge. However, existing large language models (LLMs) are primarily trained using textual data only, limiting their ability to incorporate essential visual information. In contrast, Visual Language Models, which excel at visually-oriented tasks, often fail at non-visual tasks such as basic commonsense reasoning. This divergence highlights a critical challenge - the integration of robust visual understanding with foundational text-based language reasoning. To this end, we introduce a method aimed at enhancing LLMs' visual commonsense. Specifically, our method generates multiple images based on the input text prompt and integrates these into the model's decision-making process by mixing their prediction probabilities. To facilitate multimodal grounded language modeling, we employ a late-fusion layer that combines the projected visual features with the output of a pre-trained LLM conditioned on text only. This late-fusion layer enables predictions based on comprehensive image-text knowledge as well as text only when this is required. We evaluate our approach using several visual commonsense reasoning tasks together with traditional NLP tasks, including common sense reasoning and reading comprehension. Our experimental results demonstrate significant superiority over existing baselines. When applied to recent state-of-the-art LLMs (e.g., Llama3), we observe improvements not only in visual common sense but also in traditional NLP benchmarks. Code and models are available under https://github.com/guyyariv/vLMIG.


Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model Adaptation

arXiv.org Artificial Intelligence

We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes. For this task, the videos are required to be aligned both globally and temporally with the input audio: globally, the input audio is semantically associated with the entire output video, and temporally, each segment of the input audio is associated with a corresponding segment of that video. We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model. The proposed method is based on a lightweight adaptor network, which learns to map the audio-based representation to the input representation expected by the text-to-video generation model. As such, it also enables video generation conditioned on text, audio, and, for the first time as far as we can ascertain, on both text and audio. We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples and further propose a novel evaluation metric (AV-Align) to assess the alignment of generated videos with input audio samples. AV-Align is based on the detection and comparison of energy peaks in both modalities. In comparison to recent state-of-the-art approaches, our method generates videos that are better aligned with the input sound, both with respect to content and temporal axis. We also show that videos produced by our method present higher visual quality and are more diverse.


Discriminative Class Tokens for Text-to-Image Diffusion Models

arXiv.org Artificial Intelligence

Recent advances in text-to-image diffusion models have enabled the generation of diverse and high-quality images. While impressive, the images often fall short of depicting subtle details and are susceptible to errors due to ambiguity in the input text. One way of alleviating these issues is to train diffusion models on class-labeled datasets. This approach has two disadvantages: (i) supervised datasets are generally small compared to large-scale scraped text-image datasets on which text-to-image models are trained, affecting the quality and diversity of the generated images, or (ii) the input is a hard-coded label, as opposed to free-form text, limiting the control over the generated images. In this work, we propose a non-invasive fine-tuning technique that capitalizes on the expressive potential of free-form text while achieving high accuracy through discriminative signals from a pretrained classifier. This is done by iteratively modifying the embedding of an added input token of a text-to-image diffusion model, by steering generated images toward a given target class according to a classifier. Our method is fast compared to prior fine-tuning methods and does not require a collection of in-class images or retraining of a noise-tolerant classifier. We evaluate our method extensively, showing that the generated images are: (i) more accurate and of higher quality than standard diffusion models, (ii) can be used to augment training data in a low-resource setting, and (iii) reveal information about the data used to train the guiding classifier. The code is available at \url{https://github.com/idansc/discriminative_class_tokens}.


AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation

arXiv.org Artificial Intelligence

In recent years, image generation has shown a great leap in performance, where diffusion models play a central role. Although generating high-quality images, such models are mainly conditioned on textual descriptions. This begs the question: how can we adopt such models to be conditioned on other modalities?. In this paper, we propose a novel method utilizing latent diffusion models trained for text-to-image-generation to generate images conditioned on audio recordings. Using a pre-trained audio encoding model, the proposed method encodes audio into a new token, which can be considered as an adaptation layer between the audio and text representations. Such a modeling paradigm requires a small number of trainable parameters, making the proposed approach appealing for lightweight optimization. Results suggest the proposed method is superior to the evaluated baseline methods, considering objective and subjective metrics. Code and samples Figure 1: Generated images (right) and input spectrograms are available at: https://pages.cs.huji.ac.il/ (left) from the proposed method. The model gets as input an adiyoss-lab/AudioToken.


Ordered Attention for Coherent Visual Storytelling

arXiv.org Artificial Intelligence

We address the problem of visual storytelling, i.e., generating a story for a given sequence of images. While each sentence of the story should describe a corresponding image, a coherent story also needs to be consistent and relate to both future and past images. To achieve this we develop ordered image attention (OIA). OIA models interactions between the sentence-corresponding image and important regions in other images of the sequence. To highlight the important objects, a message-passing-like algorithm collects representations of those objects in an order-aware manner. To generate the story's sentences, we then highlight important image attention vectors with an Image-Sentence Attention (ISA). Further, to alleviate common linguistic mistakes like repetitiveness, we introduce an adaptive prior. The obtained results improve the METEOR score on the VIST dataset by 1%. In addition, an extensive human study verifies coherency improvements and shows that OIA and ISA generated stories are more focused, shareable, and image-grounded.


Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

arXiv.org Artificial Intelligence

Recent text-to-image matching models apply contrastive learning to large corpora of uncurated pairs of images and sentences. While such models can provide a powerful score for matching and subsequent zero-shot tasks, they are not capable of generating caption given an image. In this work, we repurpose such models to generate a descriptive text given an image at inference time, without any further training or tuning step. This is done by combining the visual-semantic model with a large language model, benefiting from the knowledge in both web-scale models. The resulting captions are much less restrictive than those obtained by supervised captioning methods. Moreover, as a zero-shot learning method, it is extremely flexible and we demonstrate its ability to perform image arithmetic in which the inputs can be either images or text and the output is a sentence. This enables novel high-level vision capabilities such as comparing two images or solving visual analogy tests.


Ensemble of MRR and NDCG models for Visual Dialog

arXiv.org Artificial Intelligence

Assessing an AI agent that can converse in human language and understand visual content is challenging. Generation metrics, such as BLEU scores favor correct syntax over semantics. Hence a discriminative approach is often used, where an agent ranks a set of candidate options. The mean reciprocal rank (MRR) metric evaluates the model performance by taking into account the rank of a single human-derived answer. This approach, however, raises a new challenge: the ambiguity and synonymy of answers, for instance, semantic equivalence (e.g., `yeah' and `yes'). To address this, the normalized discounted cumulative gain (NDCG) metric has been used to capture the relevance of all the correct answers via dense annotations. However, the NDCG metric favors the usually applicable uncertain answers such as `I don't know. Crafting a model that excels on both MRR and NDCG metrics is challenging. Ideally, an AI agent should answer a human-like reply and validate the correctness of any answer. To address this issue, we describe a two-step non-parametric ranking approach that can merge strong MRR and NDCG models. Using our approach, we manage to keep most MRR state-of-the-art performance (70.41% vs. 71.24%) and the NDCG state-of-the-art performance (72.16% vs. 75.35%). Moreover, our approach won the recent Visual Dialog 2020 challenge. Source code is available at https://github.com/idansc/mrr-ndcg.


Factor Graph Attention

arXiv.org Artificial Intelligence

Dialog is an effective way to exchange information, but subtle details and nuances are extremely important. While significant progress has paved a path to address visual dialog with algorithms, details and nuances remain a challenge. Attention mechanisms have demonstrated compelling results to extract details in visual question answering and also provide a convincing framework for visual dialog due to their interpretability and effectiveness. However, the many data utilities that accompany visual dialog challenge existing attention techniques. We address this issue and develop a general attention mechanism for visual dialog which operates on any number of data utilities. To this end, we design a factor graph based attention mechanism which combines any number of utility representations. We illustrate the applicability of the proposed approach on the challenging and recently introduced VisDial datasets, outperforming recent state-of-the-art methods by 1.1% for VisDial0.9 and by 2% for VisDial1.0 on MRR. Our ensemble model improved the MRR score on VisDial1.0 by more than 6%.


A Simple Baseline for Audio-Visual Scene-Aware Dialog

arXiv.org Artificial Intelligence

The recently proposed audio-visual scene-aware dialog task paves the way to a more data-driven way of learning virtual assistants, smart speakers and car navigation systems. However, very little is known to date about how to effectively extract meaningful information from a plethora of sensors that pound the computational engine of those devices. Therefore, in this paper, we provide and carefully analyze a simple baseline for audio-visual scene-aware dialog which is trained end-to-end. Our method differentiates in a data-driven manner useful signals from distracting ones using an attention mechanism. We evaluate the proposed approach on the recently introduced and challenging audio-visual scene-aware dataset, and demonstrate the key features that permit to outperform the current state-of-the-art by more than 20\% on CIDEr.