Goto

Collaborating Authors

 Schwarting, Wilko


Do No Harm: A Counterfactual Approach to Safe Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) for control has become increasingly popular due to its ability to learn rich feedback policies that take into account uncertainty and complex representations of the environment. When considering safety constraints, constrained optimization approaches, where agents are penalized for constraint violations, are commonly used. In such methods, if agents are initialized in, or must visit, states where constraint violation might be inevitable, it is unclear how much they should be penalized. We address this challenge by formulating a constraint on the counterfactual harm of the learned policy compared to a default, safe policy. In a philosophical sense this formulation only penalizes the learner for constraint violations that it caused; in a practical sense it maintains feasibility of the optimal control problem. We present simulation studies on a rover with uncertain road friction and a tractor-trailer parking environment that demonstrate our constraint formulation enables agents to learn safer policies than contemporary constrained RL methods.


Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution

arXiv.org Artificial Intelligence

Recent reinforcement learning approaches have shown surprisingly strong capabilities of bang-bang policies for solving continuous control benchmarks. The underlying coarse action space discretizations often yield favourable exploration characteristics while final performance does not visibly suffer in the absence of action penalization in line with optimal control theory. In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency, but action costs can be detrimental to exploration during early training. In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution, taking advantage of recent results in decoupled Q-learning to scale our approach to high-dimensional action spaces up to dim(A) = 38. Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.


Solving Continuous Control via Q-learning

arXiv.org Artificial Intelligence

However, recent results have shown that competitive performance can be achieved with strongly reduced, discretized versions of the original action space (Tavakoli et al., 2018; Tang & Agrawal, 2020; Seyde et al., 2021). This opens the question whether tasks with complex high-dimensional action spaces can be solved using simpler critic-only, discrete action-space algorithms instead. A potential candidate is Q-learning which only requires learning a critic with the policy commonly following via ฯต-greedy or Boltzmann exploration (Watkins & Dayan, 1992; Mnih et al., 2013). While naive Q-learning struggles in high-dimensional action spaces due to exponential scaling of possible action combinations, the multi-agent RL literature has shown that factored value function representations in combination with centralized training can alleviate some of these challenges (Sunehag et al., 2017; Rashid et al., 2018), further inspiring transfer to single-agent control settings (Sharma et al., 2017; Tavakoli, 2021). Other methods have been shown to enable application of critic-only agents to continuous action spaces but require additional, costly, sampling-based optimization (Kalashnikov et al., 2018).


Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies

arXiv.org Artificial Intelligence

Reinforcement learning (RL) for continuous control typically employs distributions whose support covers the entire action space. In this work, we investigate the colloquially known phenomenon that trained agents often prefer actions at the boundaries of that space. We draw theoretical connections to the emergence of bang-bang behavior in optimal control, and provide extensive empirical evaluation across a variety of recent RL algorithms. We replace the normal Gaussian by a Bernoulli distribution that solely considers the extremes along each action dimension - a bang-bang controller. Surprisingly, this achieves state-of-the-art performance on several continuous control benchmarks - in contrast to robotic hardware, where energy and maintenance cost affect controller choices. Since exploration, learning,and the final solution are entangled in RL, we provide additional imitation learning experiments to reduce the impact of exploration on our analysis. Finally, we show that our observations generalize to environments that aim to model real-world challenges and evaluate factors to mitigate the emergence of bang-bang solutions. Our findings emphasize challenges for benchmarking continuous control algorithms, particularly in light of potential real-world applications.


Deep Latent Competition: Learning to Race Using Visual Control Policies in Latent Space

arXiv.org Artificial Intelligence

Learning competitive behaviors in multi-agent settings such as racing requires long-term reasoning about potential adversarial interactions. This paper presents Deep Latent Competition (DLC), a novel reinforcement learning algorithm that learns competitive visual control policies through self-play in imagination. The DLC agent imagines multi-agent interaction sequences in the compact latent space of a learned world model that combines a joint transition function with opponent viewpoint prediction. Imagined self-play reduces costly sample generation in the real world, while the latent representation enables planning to scale gracefully with observation dimensionality. We demonstrate the effectiveness of our algorithm in learning competitive behaviors on a novel multi-agent racing benchmark that requires planning from image observations. Code and videos available at https://sites.google.com/view/deep-latent-competition.


Learning to Plan Optimistically: Uncertainty-Guided Deep Exploration via Latent Model Ensembles

arXiv.org Artificial Intelligence

Learning complex behaviors through interaction requires coordinated long-term planning. Random exploration and novelty search lack task-centric guidance and waste effort on non-informative interactions. Instead, decision making should target samples with the potential to optimize performance far into the future, while only reducing uncertainty where conducive to this objective. This paper presents latent optimistic value exploration (LOVE), a strategy that enables deep exploration through optimism in the face of uncertain long-term rewards. We combine finite horizon rollouts from a latent model with value function estimates to predict infinite horizon returns and recover associated uncertainty through ensembling. Policy training then proceeds on an upper confidence bound (UCB) objective to identify and select the interactions most promising to improve long-term performance. We apply LOVE to visual control tasks in continuous state-action spaces and demonstrate improved sample complexity on a selection of benchmarking tasks.


Deep Evidential Regression

arXiv.org Machine Learning

Deterministic neural networks (NNs) are increasingly being deployed in safety critical domains, where calibrated, robust and efficient measures of uncertainty are crucial. While it is possible to train regression networks to output the parameters of a probability distribution by maximizing a Gaussian likelihood function, the resulting model remains oblivious to the underlying confidence of its predictions. In this paper, we propose a novel method for training deterministic NNs to not only estimate the desired target but also the associated evidence in support of that target. We accomplish this by placing evidential priors over our original Gaussian likelihood function and training our NN to infer the hyperparameters of our evidential distribution. We impose priors during training such that the model is penalized when its predicted evidence is not aligned with the correct output. Thus the model estimates not only the probabilistic mean and variance of our target but also the underlying uncertainty associated with each of those parameters. We observe that our evidential regression method learns well-calibrated measures of uncertainty on various benchmarks, scales to complex computer vision tasks, and is robust to adversarial input perturbations.