Goto

Collaborating Authors

 Schwaitzberg, Steven


Beyond Performance Scores: Directed Functional Connectivity as a Brain-Based Biomarker for Motor Skill Learning and Retention

arXiv.org Artificial Intelligence

Motor skill acquisition in fields like surgery, robotics, and sports involves learning complex task sequences through extensive training. Traditional performance metrics, like execution time and error rates, offer limited insight as they fail to capture the neural mechanisms underlying skill learning and retention. This study introduces directed functional connectivity (dFC), derived from electroencephalography (EEG), as a novel brain-based biomarker for assessing motor skill learning and retention. For the first time, dFC is applied as a biomarker to map the stages of the Fitts and Posner motor learning model, offering new insights into the neural mechanisms underlying skill acquisition and retention. Unlike traditional measures, it captures both the strength and direction of neural information flow, providing a comprehensive understanding of neural adaptations across different learning stages. The analysis demonstrates that dFC can effectively identify and track the progression through various stages of the Fitts and Posner model. Furthermore, its stability over a six-week washout period highlights its utility in monitoring long-term retention. No significant changes in dFC were observed in a control group, confirming that the observed neural adaptations were specific to training and not due to external factors. By offering a granular view of the learning process at the group and individual levels, dFC facilitates the development of personalized, targeted training protocols aimed at enhancing outcomes in fields where precision and long-term retention are critical, such as surgical education. These findings underscore the value of dFC as a robust biomarker that complements traditional performance metrics, providing a deeper understanding of motor skill learning and retention.


Dynamic directed functional connectivity as a neural biomarker for objective motor skill assessment

arXiv.org Artificial Intelligence

Objective motor skill assessment plays a critical role in fields such as surgery, where proficiency is vital for certification and patient safety. Existing assessment methods, however, rely heavily on subjective human judgment, which introduces bias and limits reproducibility. While recent efforts have leveraged kinematic data and neural imaging to provide more objective evaluations, these approaches often overlook the dynamic neural mechanisms that differentiate expert and novice performance. This study proposes a novel method for motor skill assessment based on dynamic directed functional connectivity (dFC) as a neural biomarker. By using electroencephalography (EEG) to capture brain dynamics and employing an attention-based Long Short-Term Memory (LSTM) model for non-linear Granger causality analysis, we compute dFC among key brain regions involved in psychomotor tasks. Coupled with hierarchical task analysis (HTA), our approach enables subtask-level evaluation of motor skills, offering detailed insights into neural coordination that underpins expert proficiency. A convolutional neural network (CNN) is then used to classify skill levels, achieving greater accuracy and specificity than established performance metrics in laparoscopic surgery. This methodology provides a reliable, objective framework for assessing motor skills, contributing to the development of tailored training protocols and enhancing the certification process.


One-shot domain adaptation in video-based assessment of surgical skills

arXiv.org Artificial Intelligence

Deep Learning (DL) has achieved automatic and objective assessment of surgical skills. However, the applicability of DL models is often hampered by their substantial data requirements and confinement to specific training domains. This prevents them from transitioning to new tasks with scarce data. Therefore, domain adaptation emerges as a critical element for the practical implementation of DL in real-world scenarios. Herein, we introduce A-VBANet, a novel meta-learning model capable of delivering domain-agnostic surgical skill classification via one-shot learning. A-VBANet has been rigorously developed and tested on five diverse laparoscopic and robotic surgical simulators. Furthermore, we extend its validation to operating room (OR) videos of laparoscopic cholecystectomy. Our model successfully adapts with accuracies up to 99.5% in one-shot and 99.9% in few-shot settings for simulated tasks and 89.7% for laparoscopic cholecystectomy. This research marks the first instance of a domain-agnostic methodology for surgical skill assessment, paving the way for more precise and accessible training evaluation across diverse high-stakes environments such as real-life surgery where data is scarce.