Schuster, Mike
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling
Shen, Jonathan, Nguyen, Patrick, Wu, Yonghui, Chen, Zhifeng, Chen, Mia X., Jia, Ye, Kannan, Anjuli, Sainath, Tara, Cao, Yuan, Chiu, Chung-Cheng, He, Yanzhang, Chorowski, Jan, Hinsu, Smit, Laurenzo, Stella, Qin, James, Firat, Orhan, Macherey, Wolfgang, Gupta, Suyog, Bapna, Ankur, Zhang, Shuyuan, Pang, Ruoming, Weiss, Ron J., Prabhavalkar, Rohit, Liang, Qiao, Jacob, Benoit, Liang, Bowen, Lee, HyoukJoong, Chelba, Ciprian, Jean, Sébastien, Li, Bo, Johnson, Melvin, Anil, Rohan, Tibrewal, Rajat, Liu, Xiaobing, Eriguchi, Akiko, Jaitly, Navdeep, Ari, Naveen, Cherry, Colin, Haghani, Parisa, Good, Otavio, Cheng, Youlong, Alvarez, Raziel, Caswell, Isaac, Hsu, Wei-Ning, Yang, Zongheng, Wang, Kuan-Chieh, Gonina, Ekaterina, Tomanek, Katrin, Vanik, Ben, Wu, Zelin, Jones, Llion, Schuster, Mike, Huang, Yanping, Chen, Dehao, Irie, Kazuki, Foster, George, Richardson, John, Macherey, Klaus, Bruguier, Antoine, Zen, Heiga, Raffel, Colin, Kumar, Shankar, Rao, Kanishka, Rybach, David, Murray, Matthew, Peddinti, Vijayaditya, Krikun, Maxim, Bacchiani, Michiel A. U., Jablin, Thomas B., Suderman, Rob, Williams, Ian, Lee, Benjamin, Bhatia, Deepti, Carlson, Justin, Yavuz, Semih, Zhang, Yu, McGraw, Ian, Galkin, Max, Ge, Qi, Pundak, Golan, Whipkey, Chad, Wang, Todd, Alon, Uri, Lepikhin, Dmitry, Tian, Ye, Sabour, Sara, Chan, William, Toshniwal, Shubham, Liao, Baohua, Nirschl, Michael, Rondon, Pat
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.
The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation
Chen, Mia Xu, Firat, Orhan, Bapna, Ankur, Johnson, Melvin, Macherey, Wolfgang, Foster, George, Jones, Llion, Parmar, Niki, Schuster, Mike, Chen, Zhifeng, Wu, Yonghui, Hughes, Macduff
The past year has witnessed rapid advances in sequence-to-sequence (seq2seq) modeling for Machine Translation (MT). The classic RNN-based approaches to MT were first out-performed by the convolutional seq2seq model, which was then out-performed by the more recent Transformer model. Each of these new approaches consists of a fundamental architecture accompanied by a set of modeling and training techniques that are in principle applicable to other seq2seq architectures. In this paper, we tease apart the new architectures and their accompanying techniques in two ways. First, we identify several key modeling and training techniques, and apply them to the RNN architecture, yielding a new RNMT+ model that outperforms all of the three fundamental architectures on the benchmark WMT'14 English to French and English to German tasks. Second, we analyze the properties of each fundamental seq2seq architecture and devise new hybrid architectures intended to combine their strengths. Our hybrid models obtain further improvements, outperforming the RNMT+ model on both benchmark datasets.
Reward Augmented Maximum Likelihood for Neural Structured Prediction
Norouzi, Mohammad, Bengio, Samy, Chen, zhifeng, Jaitly, Navdeep, Schuster, Mike, Wu, Yonghui, Schuurmans, Dale
A key problem in structured output prediction is enabling direct optimization of the task reward function that matters for test evaluation. This paper presents a simple and computationally efficient method that incorporates task reward into maximum likelihood training. We establish a connection between maximum likelihood and regularized expected reward, showing that they are approximately equivalent in the vicinity of the optimal solution. Then we show how maximum likelihood can be generalized by optimizing the conditional probability of auxiliary outputs that are sampled proportional to their exponentiated scaled rewards. We apply this framework to optimize edit distance in the output space, by sampling from edited targets. Experiments on speech recognition and machine translation for neural sequence to sequence models show notable improvements over maximum likelihood baseline by simply sampling from target output augmentations.
Better Generative Models for Sequential Data Problems: Bidirectional Recurrent Mixture Density Networks
Schuster, Mike
This paper describes bidirectional recurrent mixture density networks, whichcan model multi-modal distributions of the type P(Xt Iyf) and P(Xt lXI, X2, ...,Xt-l, yf) without any explicit assumptions aboutthe use of context. These expressions occur frequently in pattern recognition problems with sequential data, for example in speech recognition. Experiments show that the proposed generativemodels give a higher likelihood on test data compared toa traditional modeling approach, indicating that they can summarize the statistical properties of the data better. 1 Introduction Many problems of engineering interest can be formulated as sequential data problems inan abstract sense as supervised learning from sequential data, where an input vector (dimensionality D) sequence X xf {X!,X2, .. .