Schurr, Nathan


A General Context-Aware Framework for Improved Human-System Interactions

AI Magazine

For humans and automation to effectively collaborate and perform tasks, all participants need access to a common representation of potentially relevant situational information, or context. This article describes a general framework for building context-aware interactive intelligent systems that comprises three major functions: (1) capture human-system interactions and infer implicit context; (2) analyze and predict user intent and goals; and (3) provide effective augmentation or mitigation strategies to improve performance, such as delivering timely, personalized information and recommendations, adjusting levels of automation, or adapting visualizations. We then describe our current work towards a general platform that supports developing context-aware applications in a variety of domains. We then explore an example use case illustrating how our framework can facilitate personalized collaboration within an information management and decision support tool.


A General Context-Aware Framework for Improved Human-System Interactions

AI Magazine

For humans and automation to effectively collaborate and perform tasks, all participants need access to a common representation of potentially relevant situational information, or context. This article describes a general framework for building context-aware interactive intelligent systems that comprises three major functions: (1) capture human-system interactions and infer implicit context; (2) analyze and predict user intent and goals; and (3) provide effective augmentation or mitigation strategies to improve performance, such as delivering timely, personalized information and recommendations, adjusting levels of automation, or adapting visualizations. Our goal is to develop an approach that enables humans to interact with automation more intuitively and naturally that is reusable across domains by modeling context and algorithms at a higher-level of abstraction. We first provide an operational definition of context and discuss challenges and opportunities for exploiting context. We then describe our current work towards a general platform that supports developing context-aware applications in a variety of domains. We then explore an example use case illustrating how our framework can facilitate personalized collaboration within an information management and decision support tool. Future work includes evaluating our framework.


Reports of the AAAI 2011 Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2011 Spring Symposium Series Monday through Wednesday, March 21–23, 2011 at Stanford University. The titles of the eight symposia were AI and Health Communication, Artificial Intelligence and Sustainable Design, AI for Business Agility, Computational Physiology, Help Me Help You: Bridging the Gaps in Human-Agent Collaboration, Logical Formalizations of Commonsense Reasoning, Multirobot Systems and Physical Data Structures, and Modeling Complex Adaptive Systems As If They Were Voting Processes.


Reports of the AAAI 2011 Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University’s Department of Computer Science, presented the 2011 Spring Symposium Series Monday through Wednesday, March 21–23, 2011 at Stanford University. The titles of the eight symposia were AI and Health Communication, Artificial Intelligence and Sustainable Design, AI for Business Agility, Computational Physiology, Help Me Help You: Bridging the Gaps in Human-Agent Collaboration, Logical Formalizations of Commonsense Reasoning, Multirobot Systems and Physical Data Structures, and Modeling Complex Adaptive Systems As If They Were Voting Processes. This report summarizes the eight symposia.


Agent Based Intelligent Decluttering Enhancements

AAAI Conferences

Model-driven visualization (MDV) is a novel framework that supports more effective, intelligent user interfaces to improve decision making in complex environments by coupling cognitive and perceptual theories of information processing with advanced artificial intelligence methods. It embeds empirical and theory driven approaches for identifying and prioritizing data based on the information requirements and needs of the human decision maker within intelligent agents. The agents automatically deliver and present information based on its likely value using visualizations that best convey that information to the user(s) of the system. Agents also reason about the context and constraints of the user, environment, and display to enable a higher degree of personalization within an interactive user interface (e.g., by drawing a user’s attention to interesting aspects of the data such as trends, anomalies, and patterns). We apply cognitive systems engineering processes to help identify the information available to individuals and/or teams, where it resides, where it is needed, and ultimately how to create the mappings required in connecting critical information to those who need it with innovative visualizations that most effectively support the end user. This paper describes the application of MDV to intelligently deliver timely, mission-critical information by adapting a Common Tactical Picture (CTP) display used for maritime situation awareness, threat assessment, and decision support.


Representing Context Using the Context for Human and Automation Teams Model

AAAI Conferences

The goal of representing context in a mixed initiative sys-tem is to model the information at a level of abstraction that is actionable for both the human and automated system. A potential solution to this problem is the Context for Human and Automation Teams (CHAT). This paper introduces the CHAT model and provides example implementations from several different applications such as task scheduling tech-niques, multi-agent systems, and human-robot interaction.


A Testbed for Investigating Task Allocation Strategies between Air Traffic Controllers and Automated Agents

AAAI Conferences

To meet the growing demands of the National Airspace System (NAS) stakeholders and provide the level of service, safety and security needed to sustain future air transport, the Next Generation Air Transportation System (NextGen) concept calls for technologies and systems offering increasing support from automated systems that provide decision-aiding and optimization capabilities. This is an exciting application for some core aspects of Artificial Intelligence research since the automation must be designed to enable the human operators to access and process a myriad of information sources, understand heightened system complexity, and maximize capacity, throughput and fuel savings in the NAS.. This paper introduces an emerging application of techniques from mixed initiative (adjustable autonomy), multi-agent systems, and task scheduling techniques to the air traffic control domain. Consequently, we have created a testbed for investigating the critical challenges in supporting the early design of systems that allow for optimal, context-sensitive function (role) allocation between air traffic controller and automated agents. A pilot study has been conducted with the testbed and preliminary results show a marked qualitative improvement in using dynamic function allocation optimization versus static function allocation.


Reports on the 2005 AAAI Spring Symposium Series

AI Magazine

The Association for the Advancement of Artificial Intelligence presented its 2005 Spring Symposium Series on Monday through Wednesday, March 21-23, 2005 at Stanford University in Stanford, California. The topics of the eight symposia in this symposium series were (1) AI Technologies for Homeland Security; (2) Challenges to Decision Support in a Changing World; (3) Developmental Robotics; (4) Dialogical Robots: Verbal Interaction with Embodied Agents and Situated Devices; (5) Knowledge Collection from Volunteer Contributors; (6) Metacognition in Computation; (7) Persistent Assistants: Living and Working with AI; and (8) Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance.


Reports on the 2005 AAAI Spring Symposium Series

AI Magazine

The Association for the Advancement of Artificial Intelligence presented its 2005 Spring Symposium Series on Monday through Wednesday, March 21-23, 2005 at Stanford University in Stanford, California. The topics of the eight symposia in this symposium series were (1) AI Technologies for Homeland Security; (2) Challenges to Decision Support in a Changing World; (3) Developmental Robotics; (4) Dialogical Robots: Verbal Interaction with Embodied Agents and Situated Devices; (5) Knowledge Collection from Volunteer Contributors; (6) Metacognition in Computation; (7) Persistent Assistants: Living and Working with AI; and (8) Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance.