Goto

Collaborating Authors

 Schultz, Tanja


STAA-Net: A Sparse and Transferable Adversarial Attack for Speech Emotion Recognition

arXiv.org Artificial Intelligence

Speech contains rich information on the emotions of humans, and Speech Emotion Recognition (SER) has been an important topic in the area of human-computer interaction. The robustness of SER models is crucial, particularly in privacy-sensitive and reliability-demanding domains like private healthcare. Recently, the vulnerability of deep neural networks in the audio domain to adversarial attacks has become a popular area of research. However, prior works on adversarial attacks in the audio domain primarily rely on iterative gradient-based techniques, which are time-consuming and prone to overfitting the specific threat model. Furthermore, the exploration of sparse perturbations, which have the potential for better stealthiness, remains limited in the audio domain. To address these challenges, we propose a generator-based attack method to generate sparse and transferable adversarial examples to deceive SER models in an end-to-end and efficient manner. We evaluate our method on two widely-used SER datasets, Database of Elicited Mood in Speech (DEMoS) and Interactive Emotional dyadic MOtion CAPture (IEMOCAP), and demonstrate its ability to generate successful sparse adversarial examples in an efficient manner. Moreover, our generated adversarial examples exhibit model-agnostic transferability, enabling effective adversarial attacks on advanced victim models.


Correlated Bigram LSA for Unsupervised Language Model Adaptation

Neural Information Processing Systems

We present a correlated bigram LSA approach for unsupervised LM adaptation for automatic speech recognition. The model is trained using efficient variational EM and smoothed using the proposed fractional Kneser-Ney smoothing which handles fractional counts. We address the scalability issue to large training corpora via bootstrapping of bigram LSA from unigram LSA. For LM adaptation, unigram and bigram LSA are integrated into the background N-gram LM via marginal adaptation and linear interpolation respectively. Experimental results on the Mandarin RT04test set show that applying unigram and bigram LSA together yields 6%-8% relative perplexity reduction and 2.5% relative character error rate reduction whichis statistically significant compared to applying only unigram LSA. On the large-scale evaluation on Arabic, 3% relative word error rate reduction is achieved which is also statistically significant.