Schultz, David
On the Existence of a Sample Mean in Dynamic Time Warping Spaces
Jain, Brijnesh J., Schultz, David
The concept of sample mean in dynamic time warping (DTW) spaces has been successfully applied to improve pattern recognition systems and generalize centroid-based clustering algorithms. Its existence has neither been proved nor challenged. This article presents sufficient conditions for existence of a sample mean in DTW spaces. The proposed result justifies prior work on approximate mean algorithms, sets the stage for constructing exact mean algorithms, and is a first step towards a statistical theory of DTW spaces.
Optimal Warping Paths are unique for almost every Pair of Time Series
Jain, Brijnesh J., Schultz, David
Update rules for learning in dynamic time warping spaces are based on optimal warping paths between parameter and input time series. In general, optimal warping paths are not unique resulting in adverse effects in theory and practice. Under the assumption of squared error local costs, we show that no two warping paths have identical costs almost everywhere in a measure-theoretic sense. Two direct consequences of this result are: (i) optimal warping paths are unique almost everywhere, and (ii) the set of all pairs of time series with multiple equal-cost warping paths coincides with the union of exponentially many zero sets of quadratic forms. One implication of the proposed results is that typical distance-based cost functions such as the k-means objective are differentiable almost everywhere and can be minimized by subgradient methods.
Asymmetric Learning Vector Quantization for Efficient Nearest Neighbor Classification in Dynamic Time Warping Spaces
Jain, Brijnesh, Schultz, David
The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the most popular approaches in time series classification. This method suffers from high storage and computation requirements for large training sets. As a solution to both drawbacks, this article extends learning vector quantization (LVQ) from Euclidean spaces to DTW spaces. The proposed LVQ scheme uses asymmetric weighted averaging as update rule. Empirical results exhibited superior performance of asymmetric generalized LVQ (GLVQ) over other state-of-the-art prototype generation methods for nearest neighbor classification.