Schulten, K.
A Critical Comparison of Models for Orientation and Ocular Dominance Columns in the Striate Cortex
Erwin, E., Obermayer, K., Schulten, K.
More than ten of the most prominent models for the structure and for the activity dependent formation of orientation and ocular dominance columns in the striate cort( x have been evaluated. We implemented those models on parallel machines, we extensively explored parameter space, and we quantitatively compared model predictions with experimental data which were recorded optically from macaque striate cortex. In our contribution we present a summary of our results to date. Briefly, we find that (i) despite apparent differences, many models are based on similar principles and, consequently, make similar predictions, (ii) certain "pattern models" as well as the developmental "correlation-based learning" models disagree with the experimental data, and (iii) of the models we have investigated, "competitive Hebbian" models and the recent model of Swindale provide the best match with experimental data. 1 Models and Data The models for the formation and structure of orientation and ocular dominance columns which we have investigated are summarized in table 1. Models fall into two categories: "Pattern models" whose aim is to achieve a concise description of the observed patterns and "developmental models" which are focussed on the pro- 94
A comparison between a neural network model for the formation of brain maps and experimental data
Obermayer, K., Schulten, K., Blasdel, G. G.
Recently, high resolution images of the simultaneous representation of orientation preference, orientation selectivity and ocular dominance have been obtained for large areas in monkey striate cortex by optical imaging [1-3]. These data allow for the first time a "local" as well as "global" description of the spatial patterns and provide strong evidence for correlations between orientation selectivity and ocular dominance. A quantitative analysis reveals that these correlations arise when a fivedimensional feature space (two dimensions for retinotopic space, one each for orientation preference, orientation specificity, and ocular dominance) is mapped into the two available dimensions of cortex while locally preserving topology. These results provide strong evidence for the concept of topology preserving maps which have been suggested as a basic design principle of striate cortex [4-7]. Monkey striate cortex contains a retinotopic map in which are embedded the highly repetitive patterns of orientation selectivity and ocular dominance. The retinotopic projection establishes a "global" order, while maps of variables describing other stimulus features, in particular line orientation and ocularity, dominate cortical organization locally. A large number of pattern models [8-12] as well as models of development [6,7,13-21] have been proposed to describe the spatial structure of these patterns and their development during ontogenesis. However, most models have not been compared with experimental data in detail. There are two reasons for this: (i) many model-studies were not elaborated enough to be experimentally testable and (ii) a sufficient amount of experimental data obtained from large areas of striate cortex was not available.