Goto

Collaborating Authors

 Schneider, Jon


Optimal cross-learning for contextual bandits with unknown context distributions

arXiv.org Machine Learning

We consider the problem of designing contextual bandit algorithms in the ``cross-learning'' setting of Balseiro et al., where the learner observes the loss for the action they play in all possible contexts, not just the context of the current round. We specifically consider the setting where losses are chosen adversarially and contexts are sampled i.i.d. from an unknown distribution. In this setting, we resolve an open problem of Balseiro et al. by providing an efficient algorithm with a nearly tight (up to logarithmic factors) regret bound of $\widetilde{O}(\sqrt{TK})$, independent of the number of contexts. As a consequence, we obtain the first nearly tight regret bounds for the problems of learning to bid in first-price auctions (under unknown value distributions) and sleeping bandits with a stochastic action set. At the core of our algorithm is a novel technique for coordinating the execution of a learning algorithm over multiple epochs in such a way to remove correlations between estimation of the unknown distribution and the actions played by the algorithm. This technique may be of independent interest for other learning problems involving estimation of an unknown context distribution.


Is Learning in Games Good for the Learners?

arXiv.org Artificial Intelligence

We consider a number of questions related to tradeoffs between reward and regret in repeated gameplay between two agents. To facilitate this, we introduce a notion of $\textit{generalized equilibrium}$ which allows for asymmetric regret constraints, and yields polytopes of feasible values for each agent and pair of regret constraints, where we show that any such equilibrium is reachable by a pair of algorithms which maintain their regret guarantees against arbitrary opponents. As a central example, we highlight the case one agent is no-swap and the other's regret is unconstrained. We show that this captures an extension of $\textit{Stackelberg}$ equilibria with a matching optimal value, and that there exists a wide class of games where a player can significantly increase their utility by deviating from a no-swap-regret algorithm against a no-swap learner (in fact, almost any game without pure Nash equilibria is of this form). Additionally, we make use of generalized equilibria to consider tradeoffs in terms of the opponent's algorithm choice. We give a tight characterization for the maximal reward obtainable against $\textit{some}$ no-regret learner, yet we also show a class of games in which this is bounded away from the value obtainable against the class of common "mean-based" no-regret algorithms. Finally, we consider the question of learning reward-optimal strategies via repeated play with a no-regret agent when the game is initially unknown. Again we show tradeoffs depending on the opponent's learning algorithm: the Stackelberg strategy is learnable in exponential time with any no-regret agent (and in polynomial time with any no-$\textit{adaptive}$-regret agent) for any game where it is learnable via queries, and there are games where it is learnable in polynomial time against any no-swap-regret agent but requires exponential time against a mean-based no-regret agent.


U-Calibration: Forecasting for an Unknown Agent

arXiv.org Artificial Intelligence

We consider the problem of evaluating forecasts of binary events whose predictions are consumed by rational agents who take an action in response to a prediction, but whose utility is unknown to the forecaster. We show that optimizing forecasts for a single scoring rule (e.g., the Brier score) cannot guarantee low regret for all possible agents. In contrast, forecasts that are well-calibrated guarantee that all agents incur sublinear regret. However, calibration is not a necessary criterion here (it is possible for miscalibrated forecasts to provide good regret guarantees for all possible agents), and calibrated forecasting procedures have provably worse convergence rates than forecasting procedures targeting a single scoring rule. Motivated by this, we present a new metric for evaluating forecasts that we call U-calibration, equal to the maximal regret of the sequence of forecasts when evaluated under any bounded scoring rule. We show that sublinear U-calibration error is a necessary and sufficient condition for all agents to achieve sublinear regret guarantees. We additionally demonstrate how to compute the U-calibration error efficiently and provide an online algorithm that achieves $O(\sqrt{T})$ U-calibration error (on par with optimal rates for optimizing for a single scoring rule, and bypassing lower bounds for the traditionally calibrated learning procedures). Finally, we discuss generalizations to the multiclass prediction setting.


Pseudonorm Approachability and Applications to Regret Minimization

arXiv.org Artificial Intelligence

Blackwell's celebrated approachability theory provides a general framework for a variety of learning problems, including regret minimization. However, Blackwell's proof and implicit algorithm measure approachability using the $\ell_2$ (Euclidean) distance. We argue that in many applications such as regret minimization, it is more useful to study approachability under other distance metrics, most commonly the $\ell_\infty$-metric. But, the time and space complexity of the algorithms designed for $\ell_\infty$-approachability depend on the dimension of the space of the vectorial payoffs, which is often prohibitively large. Thus, we present a framework for converting high-dimensional $\ell_\infty$-approachability problems to low-dimensional pseudonorm approachability problems, thereby resolving such issues. We first show that the $\ell_\infty$-distance between the average payoff and the approachability set can be equivalently defined as a pseudodistance between a lower-dimensional average vector payoff and a new convex set we define. Next, we develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $\ell_2$ and other norms, showing that it can be achieved via online linear optimization (OLO) over a convex set given by the Fenchel dual of the unit pseudonorm ball. We then use that to show, modulo mild normalization assumptions, that there exists an $\ell_\infty$-approachability algorithm whose convergence is independent of the dimension of the original vectorial payoff. We further show that that algorithm admits a polynomial-time complexity, assuming that the original $\ell_\infty$-distance can be computed efficiently. We also give an $\ell_\infty$-approachability algorithm whose convergence is logarithmic in that dimension using an FTRL algorithm with a maximum-entropy regularizer.


Learning Product Rankings Robust to Fake Users

arXiv.org Machine Learning

In many online platforms, customers' decisions are substantially influenced by product rankings as most customers only examine a few top-ranked products. Concurrently, such platforms also use the same data corresponding to customers' actions to learn how these products must be ranked or ordered. These interactions in the underlying learning process, however, may incentivize sellers to artificially inflate their position by employing fake users, as exemplified by the emergence of click farms. Motivated by such fraudulent behavior, we study the ranking problem of a platform that faces a mixture of real and fake users who are indistinguishable from one another. We first show that existing learning algorithms---that are optimal in the absence of fake users---may converge to highly sub-optimal rankings under manipulation by fake users. To overcome this deficiency, we develop efficient learning algorithms under two informational environments: in the first setting, the platform is aware of the number of fake users, and in the second setting, it is agnostic to the number of fake users. For both these environments, we prove that our algorithms converge to the optimal ranking, while being robust to the aforementioned fraudulent behavior; we also present worst-case performance guarantees for our methods, and show that they significantly outperform existing algorithms. At a high level, our work employs several novel approaches to guarantee robustness such as: (i) constructing product-ordering graphs that encode the pairwise relationships between products inferred from the customers' actions; and (ii) implementing multiple levels of learning with a judicious amount of bi-directional cross-learning between levels.


Reserve Price Optimization for First Price Auctions

arXiv.org Machine Learning

The display advertising industry has recently transitioned from second- to first-price auctions as its primary mechanism for ad allocation and pricing. In light of this, publishers need to re-evaluate and optimize their auction parameters, notably reserve prices. In this paper, we propose a gradient-based algorithm to adaptively update and optimize reserve prices based on estimates of bidders' responsiveness to experimental shocks in reserves. Our key innovation is to draw on the inherent structure of the revenue objective in order to reduce the variance of gradient estimates and improve convergence rates in both theory and practice. We show that revenue in a first-price auction can be usefully decomposed into a \emph{demand} component and a \emph{bidding} component, and introduce techniques to reduce the variance of each component. We characterize the bias-variance trade-offs of these techniques and validate the performance of our proposed algorithm through experiments on synthetic data and real display ad auctions data from Google ad exchange.


Contextual Pricing for Lipschitz Buyers

Neural Information Processing Systems

We investigate the problem of learning a Lipschitz function from binary feedback. In this problem, a learner is trying to learn a Lipschitz function $f:[0,1]^d \rightarrow [0,1]$ over the course of $T$ rounds. On round $t$, an adversary provides the learner with an input $x_t$, the learner submits a guess $y_t$ for $f(x_t)$, and learns whether $y_t > f(x_t)$ or $y_t \leq f(x_t)$. The learner's goal is to minimize their total loss $\sum_t\ell(f(x_t), y_t)$ (for some loss function $\ell$). The problem is motivated by \textit{contextual dynamic pricing}, where a firm must sell a stream of differentiated products to a collection of buyers with non-linear valuations for the items and observes only whether the item was sold or not at the posted price. For the symmetric loss $\ell(f(x_t), y_t) = \vert f(x_t) - y_t \vert$, we provide an algorithm for this problem achieving total loss $O(\log T)$ when $d=1$ and $O(T^{(d-1)/d})$ when $d>1$, and show that both bounds are tight (up to a factor of $\sqrt{\log T}$). For the pricing loss function $\ell(f(x_t), y_t) = f(x_t) - y_t {\bf 1}\{y_t \leq f(x_t)\}$ we show a regret bound of $O(T^{d/(d+1)})$ and show that this bound is tight. We present improved bounds in the special case of a population of linear buyers.


Contextual Pricing for Lipschitz Buyers

Neural Information Processing Systems

We investigate the problem of learning a Lipschitz function from binary feedback. In this problem, a learner is trying to learn a Lipschitz function $f:[0,1]^d \rightarrow [0,1]$ over the course of $T$ rounds. On round $t$, an adversary provides the learner with an input $x_t$, the learner submits a guess $y_t$ for $f(x_t)$, and learns whether $y_t > f(x_t)$ or $y_t \leq f(x_t)$. The learner's goal is to minimize their total loss $\sum_t\ell(f(x_t), y_t)$ (for some loss function $\ell$). The problem is motivated by \textit{contextual dynamic pricing}, where a firm must sell a stream of differentiated products to a collection of buyers with non-linear valuations for the items and observes only whether the item was sold or not at the posted price. For the symmetric loss $\ell(f(x_t), y_t) = \vert f(x_t) - y_t \vert$, we provide an algorithm for this problem achieving total loss $O(\log T)$ when $d=1$ and $O(T^{(d-1)/d})$ when $d>1$, and show that both bounds are tight (up to a factor of $\sqrt{\log T}$). For the pricing loss function $\ell(f(x_t), y_t) = f(x_t) - y_t {\bf 1}\{y_t \leq f(x_t)\}$ we show a regret bound of $O(T^{d/(d+1)})$ and show that this bound is tight. We present improved bounds in the special case of a population of linear buyers.


Contextual Bandits with Cross-learning

arXiv.org Machine Learning

In the classical contextual bandits problem, in each round $t$, a learner observes some context $c$, chooses some action $a$ to perform, and receives some reward $r_{a,t}(c)$. We consider the variant of this problem where in addition to receiving the reward $r_{a,t}(c)$, the learner also learns the values of $r_{a,t}(c')$ for all other contexts $c'$; i.e., the rewards that would have been achieved by performing that action under different contexts. This variant arises in several strategic settings, such as learning how to bid in non-truthful repeated auctions (in this setting the context is the decision maker's private valuation for each auction). We call this problem the contextual bandits problem with cross-learning. The best algorithms for the classical contextual bandits problem achieve $\tilde{O}(\sqrt{CKT})$ regret against all stationary policies, where $C$ is the number of contexts, $K$ the number of actions, and $T$ the number of rounds. We demonstrate algorithms for the contextual bandits problem with cross-learning that remove the dependence on $C$ and achieve regret $O(\sqrt{KT})$ (when contexts are stochastic with known distribution), $\tilde{O}(K^{1/3}T^{2/3})$ (when contexts are stochastic with unknown distribution), and $\tilde{O}(\sqrt{KT})$ (when contexts are adversarial but rewards are stochastic).


Selling to a No-Regret Buyer

arXiv.org Machine Learning

We consider the problem of a single seller repeatedly selling a single item to a single buyer (specifically, the buyer has a value drawn fresh from known distribution $D$ in every round). Prior work assumes that the buyer is fully rational and will perfectly reason about how their bids today affect the seller's decisions tomorrow. In this work we initiate a different direction: the buyer simply runs a no-regret learning algorithm over possible bids. We provide a fairly complete characterization of optimal auctions for the seller in this domain. Specifically: - If the buyer bids according to EXP3 (or any "mean-based" learning algorithm), then the seller can extract expected revenue arbitrarily close to the expected welfare. This auction is independent of the buyer's valuation $D$, but somewhat unnatural as it is sometimes in the buyer's interest to overbid. - There exists a learning algorithm $\mathcal{A}$ such that if the buyer bids according to $\mathcal{A}$ then the optimal strategy for the seller is simply to post the Myerson reserve for $D$ every round. - If the buyer bids according to EXP3 (or any "mean-based" learning algorithm), but the seller is restricted to "natural" auction formats where overbidding is dominated (e.g. Generalized First-Price or Generalized Second-Price), then the optimal strategy for the seller is a pay-your-bid format with decreasing reserves over time. Moreover, the seller's optimal achievable revenue is characterized by a linear program, and can be unboundedly better than the best truthful auction yet simultaneously unboundedly worse than the expected welfare.