Goto

Collaborating Authors

 Schneider, Jeff G.


Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Neural Information Processing Systems

In this paper, we address the question of what kind of knowledge is generally transferable from unlabeled text. We suggest and analyze the semantic correlation of words as a generally transferable structure of the language and propose a new method to learn this structure using an appropriately chosen latent variable model. This semantic correlation contains structural information of the language space and can be used to control the joint shrinkage of model parameters for any specific task in the same space through regularization. In an empirical study, we construct 190 different text classification tasks from a real-world benchmark, and the unlabeled documents are a mixture from all these tasks. We test the ability of various algorithms to use the mixed unlabeled text to enhance all classification tasks.


Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Neural Information Processing Systems

In this paper, we propose a matrix-variate normal penalty with sparse inverse covariances to couple multiple tasks. Learning multiple (parametric) models can be viewed as estimating a matrix of parameters, where rows and columns of the matrix correspond to tasks and features, respectively. Following the matrix-variate normal density, we design a penalty that decomposes the full covariance of matrix elements into the Kronecker product of row covariance and column covariance, which characterizes both task relatedness and feature representation. Several recently proposed methods are variants of the special cases of this formulation. To address the overfitting issue and select meaningful task and feature structures, we include sparse covariance selection into our matrix-normal regularization via L-1 penalties on task and feature inverse covariances.


Learning Auto-regressive Models from Sequence and Non-sequence Data

Neural Information Processing Systems

Vector Auto-regressive models (VAR) are useful tools for analyzing time series data. In quite a few modern time series modelling tasks, the collection of reliable time series turns out to be a major challenge, either due to the slow progression of the dynamic process of interest, or inaccessibility of repetitive measurements of the same dynamic process over time. In those situations, however, we observe that it is often easier to collect a large amount of non-sequence samples, or snapshots of the dynamic process of interest. In this work, we assume a small amount of time series data are available, and propose methods to incorporate non-sequence data into penalized least-square estimation of VAR models. We consider non-sequence data as samples drawn from the stationary distribution of the underlying VAR model, and devise a novel penalization scheme based on the discrete-time Lyapunov equation concerning the covariance of the stationary distribution. Experiments on synthetic and video data demonstrate the effectiveness of the proposed methods.


Group Anomaly Detection using Flexible Genre Models

Neural Information Processing Systems

An important task in exploring and analyzing real-world data sets is to detect unusual and interesting phenomena. In this paper, we study the group anomaly detection problem. Unlike traditional anomaly detection research that focuses on data points, our goal is to discover anomalous aggregated behaviors of groups of points. For this purpose, we propose the Flexible Genre Model (FGM). FGM is designed to characterize data groups at both the point level and the group level so as to detect various types of group anomalies. We evaluate the effectiveness of FGM on both synthetic and real data sets including images and turbulence data, and show that it is superior to existing approaches in detecting group anomalies.


Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Neural Information Processing Systems

In this paper, we propose a matrix-variate normal penalty with sparse inverse covariances to couple multiple tasks. Learning multiple (parametric) models can be viewed as estimating a matrix of parameters, where rows and columns of the matrix correspond to tasks and features, respectively. Following the matrix-variate normal density, we design a penalty that decomposes the full covariance of matrix elements into the Kronecker product of row covariance and column covariance, which characterizes both task relatedness and feature representation. Several recently proposed methods are variants of the special cases of this formulation. To address the overfitting issue and select meaningful task and feature structures, we include sparse covariance selection into our matrix-normal regularization via L-1 penalties on task and feature inverse covariances. We empirically study the proposed method and compare with related models in two real-world problems: detecting landmines in multiple fields and recognizing faces between different subjects. Experimental results show that the proposed framework provides an effective and flexible way to model various different structures of multiple tasks.


Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Neural Information Processing Systems

In this paper, we address the question of what kind of knowledge is generally transferable from unlabeled text. We suggest and analyze the semantic correlation of words as a generally transferable structure of the language and propose a new method to learn this structure using an appropriately chosen latent variable model. This semantic correlation contains structural information of the language space and can be used to control the joint shrinkage of model parameters for any specific task in the same space through regularization. In an empirical study, we construct 190 different text classification tasks from a real-world benchmark, and the unlabeled documents are a mixture from all these tasks. We test the ability of various algorithms to use the mixed unlabeled text to enhance all classification tasks. Empirical results show that the proposed approach is a reliable and scalable method for semi-supervised learning, regardless of the source of unlabeled data, the specific task to be enhanced, and the prediction model used.


Policy Search by Dynamic Programming

Neural Information Processing Systems

We consider the policy search approach to reinforcement learning. We show that if a "baseline distribution" is given (indicating roughly how often we expect a good policy to visit each state), then we can derive a policy search algorithm that terminates in a finite number of steps, and for which we can provide nontrivial performance guarantees. We also demonstrate this algorithm on several grid-world POMDPs, a planar biped walking robot, and a double-pole balancing problem.


Policy Search by Dynamic Programming

Neural Information Processing Systems

We consider the policy search approach to reinforcement learning. We show that if a "baseline distribution" is given (indicating roughly how often we expect a good policy to visit each state), then we can derive a policy search algorithm that terminates in a finite number of steps, and for which we can provide nontrivial performance guarantees. We also demonstrate this algorithm on several grid-world POMDPs, a planar biped walking robot, and a double-pole balancing problem.


Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning

Neural Information Processing Systems

Figure 2: The task is to move the cart to the origin as quickly as possible without dropping the pole. The bottom three pictures show a trace of the policy execution obtained after one, two, and three trials (shown in increments of 0.5 seconds) Controller Number of data points used Cost from initial state 17 to build the controller LQR


Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning

Neural Information Processing Systems

Model learning combined with dynamic programming has been shown to be effective for learning control of continuous state dynamic systems. The simplest method assumes the learned model is correct and applies dynamic programming to it, but many approximators provide uncertainty estimates on the fit. How can they be exploited? This paper addresses the case where the system must be prevented from having catastrophic failures during learning.We propose a new algorithm adapted from the dual control literature and use Bayesian locally weighted regression models with dynamic programming.A common reinforcement learning assumption is that aggressive exploration should be encouraged. This paper addresses the converse casein which the system has to reign in exploration.