Schneider, Jeff
Training a Generally Curious Agent
Tajwar, Fahim, Jiang, Yiding, Thankaraj, Abitha, Rahman, Sumaita Sadia, Kolter, J Zico, Schneider, Jeff, Salakhutdinov, Ruslan
Efficient exploration is essential for intelligent systems interacting with their environment, but existing language models often fall short in scenarios that require strategic information gathering. In this paper, we present PAPRIKA, a fine-tuning approach that enables language models to develop general decision-making capabilities that are not confined to particular environments. By training on synthetic interaction data from different tasks that require diverse strategies, PAPRIKA teaches models to explore and adapt their behavior on a new task based on environment feedback in-context without more gradient updates. Experimental results show that models fine-tuned with PAPRIKA can effectively transfer their learned decision-making capabilities to entirely unseen tasks without additional training. Unlike traditional training, our approach's primary bottleneck lies in sampling useful interaction data instead of model updates. To improve sample efficiency, we propose a curriculum learning strategy that prioritizes sampling trajectories from tasks with high learning potential. These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems that require interactions with the external world.
TD-M(PC)$^2$: Improving Temporal Difference MPC Through Policy Constraint
Lin, Haotian, Wang, Pengcheng, Schneider, Jeff, Shi, Guanya
Through theoretical analysis in TD-MPC implementation leads to persistent value and experiments, we argue that this issue is deeply rooted overestimation. It is also empirically observed that the performance in the structural policy mismatch between the data generation of TD-MPC2 is far from satisfactory at some policy that is always bootstrapped by the planner and high-dimensional locomotion tasks [33]. This phenomenon the learned policy prior. To mitigate such a mismatch in is closely connected to, yet distinct from, the well-known a minimalist way, we propose a policy regularization term overestimation bias arising from function approximation reducing out-of-distribution (OOD) queries, thereby improving errors and error accumulation in temporal difference learning value learning. Our method involves minimum changes [39, 37, 7]. More precisely, we identify the underlying on top of existing frameworks and requires no additional issue as policy mismatch. The behavior policy generated by computation. Extensive experiments demonstrate that the the MPC planner governs data collection, creating a buffered proposed approach improves performance over baselines data distribution that does not directly align with the learned such as TD-MPC2 by large margins, particularly in 61-DoF value or policy prior.
State Combinatorial Generalization In Decision Making With Conditional Diffusion Models
Duan, Xintong, He, Yutong, Tajwar, Fahim, Chen, Wen-Tse, Salakhutdinov, Ruslan, Schneider, Jeff
Many real-world decision-making problems are combinatorial in nature, where states (e.g., surrounding traffic of a self-driving car) can be seen as a combination of basic elements (e.g., pedestrians, trees, and other cars). Due to combinatorial complexity, observing all combinations of basic elements in the training set is infeasible, which leads to an essential yet understudied problem of zero-shot generalization to states that are unseen combinations of previously seen elements. In this work, we first formalize this problem and then demonstrate how existing value-based reinforcement learning (RL) algorithms struggle due to unreliable value predictions in unseen states. We argue that this problem cannot be addressed with exploration alone, but requires more expressive and generalizable models. We demonstrate that behavior cloning with a conditioned diffusion model trained on expert trajectory generalizes better to states formed by new combinations of seen elements than traditional RL methods. Through experiments in maze, driving, and multiagent environments, we show that conditioned diffusion models outperform traditional RL techniques and highlight the broad applicability of our problem formulation.
Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning
Chen, Jiayu, Chen, Wentse, Schneider, Jeff
Offline reinforcement learning (RL) is a powerful approach for data-driven decision-making and control. Compared to model-free methods, offline model-based reinforcement learning (MBRL) explicitly learns world models from a static dataset and uses them as surrogate simulators, improving the data efficiency and enabling the learned policy to potentially generalize beyond the dataset support. However, there could be various MDPs that behave identically on the offline dataset and so dealing with the uncertainty about the true MDP can be challenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive Markov Decision Process (BAMDP), which is a principled framework for addressing model uncertainty. We further introduce a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces with stochastic transitions. This planning process is based on Monte Carlo Tree Search and can be integrated into offline MBRL as a policy improvement operator in policy iteration. Our ``RL + Search" framework follows in the footsteps of superhuman AIs like AlphaZero, improving on current offline MBRL methods by incorporating more computation input. The proposed algorithm significantly outperforms state-of-the-art model-based and model-free offline RL methods on twelve D4RL MuJoCo benchmark tasks and three target tracking tasks in a challenging, stochastic tokamak control simulator.
Decentralized Uncertainty-Aware Active Search with a Team of Aerial Robots
Tabib, Wennie, Stecklein, John, McDowell, Caleb, Goel, Kshitij, Jonathan, Felix, Rathod, Abhishek, Kokoski, Meghan, Burkholder, Edsel, Wallace, Brian, Navarro-Serment, Luis Ernesto, Bakshi, Nikhil Angad, Gupta, Tejus, Papernick, Norman, Guttendorf, David, Kahn, Erik E., Kasemer, Jessica, Holdaway, Jesse, Schneider, Jeff
Rapid search and rescue is critical to maximizing survival rates following natural disasters. However, these efforts are challenged by the need to search large disaster zones, lack of reliability in the communications infrastructure, and a priori unknown numbers of objects of interest (OOIs), such as injured survivors. Aerial robots are increasingly being deployed for search and rescue due to their high mobility, but there remains a gap in deploying multi-robot autonomous aerial systems for methodical search of large environments. Prior works have relied on preprogrammed paths from human operators or are evaluated only in simulation. We bridge these gaps in the state of the art by developing and demonstrating a decentralized active search system, which biases its trajectories to take additional views of uncertain OOIs. The methodology leverages stochasticity for rapid coverage in communication denied scenarios. When communications are available, robots share poses, goals, and OOI information to accelerate the rate of search. Extensive simulations and hardware experiments in Bloomingdale, OH, are conducted to validate the approach. The results demonstrate the active search approach outperforms greedy coverage-based planning in communication-denied scenarios while maintaining comparable performance in communication-enabled scenarios.
Planning with Adaptive World Models for Autonomous Driving
Vasudevan, Arun Balajee, Peri, Neehar, Schneider, Jeff, Ramanan, Deva
Motion planning is crucial for safe navigation in complex urban environments. Historically, motion planners (MPs) have been evaluated with procedurally-generated simulators like CARLA. However, such synthetic benchmarks do not capture real-world multi-agent interactions. nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic, effectively turning the fixed dataset into a reactive simulator. We analyze the characteristics of nuPlan's recorded logs and find that each city has its own unique driving behaviors, suggesting that robust planners must adapt to different environments. We learn to model such unique behaviors with BehaviorNet, a graph convolutional neural network (GCNN) that predicts reactive agent behaviors using features derived from recently-observed agent histories; intuitively, some aggressive agents may tailgate lead vehicles, while others may not. To model such phenomena, BehaviorNet predicts parameters of an agent's motion controller rather than predicting its spacetime trajectory (as most forecasters do). Finally, we present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions. Our extensive experiments demonstrate that AdaptiveDriver achieves state-of-the-art results on the nuPlan closed-loop planning benchmark, reducing test error from 6.4% to 4.6%, even when applied to never-before-seen cities.
Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data
Tajwar, Fahim, Singh, Anikait, Sharma, Archit, Rafailov, Rafael, Schneider, Jeff, Xie, Tengyang, Ermon, Stefano, Finn, Chelsea, Kumar, Aviral
Learning from preference labels plays a crucial role in fine-tuning large language models. There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning. Different methods come with different implementation tradeoffs and performance differences, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find (offline) contrastive or even purely supervised methods sufficient. This raises a natural question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that, in general, approaches that use on-policy sampling or attempt to push down the likelihood on certain responses (i.e., employ a "negative gradient") outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs and informs how data should be collected for maximal improvement.
What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions
Choe, Sang Keun, Ahn, Hwijeen, Bae, Juhan, Zhao, Kewen, Kang, Minsoo, Chung, Youngseog, Pratapa, Adithya, Neiswanger, Willie, Strubell, Emma, Mitamura, Teruko, Schneider, Jeff, Hovy, Eduard, Grosse, Roger, Xing, Eric
Large language models (LLMs) are trained on a vast amount of human-written data, but data providers often remain uncredited. In response to this issue, data valuation (or data attribution), which quantifies the contribution or value of each data to the model output, has been discussed as a potential solution. Nevertheless, applying existing data valuation methods to recent LLMs and their vast training datasets has been largely limited by prohibitive compute and memory costs. In this work, we focus on influence functions, a popular gradient-based data valuation method, and significantly improve its scalability with an efficient gradient projection strategy called LoGra that leverages the gradient structure in backpropagation. We then provide a theoretical motivation of gradient projection approaches to influence functions to promote trust in the data valuation process. Lastly, we lower the barrier to implementing data valuation systems by introducing LogIX, a software package that can transform existing training code into data valuation code with minimal effort. In our data valuation experiments, LoGra achieves competitive accuracy against more expensive baselines while showing up to 6,500x improvement in throughput and 5x reduction in GPU memory usage when applied to Llama3-8B-Instruct and the 1B-token dataset.
Tractable Joint Prediction and Planning over Discrete Behavior Modes for Urban Driving
Villaflor, Adam, Yang, Brian, Su, Huangyuan, Fragkiadaki, Katerina, Dolan, John, Schneider, Jeff
Significant progress has been made in training multimodal trajectory forecasting models for autonomous driving. However, effectively integrating these models with downstream planners and model-based control approaches is still an open problem. Although these models have conventionally been evaluated for open-loop prediction, we show that they can be used to parameterize autoregressive closed-loop models without retraining. We consider recent trajectory prediction approaches which leverage learned anchor embeddings to predict multiple trajectories, finding that these anchor embeddings can parameterize discrete and distinct modes representing high-level driving behaviors. We propose to perform fully reactive closed-loop planning over these discrete latent modes, allowing us to tractably model the causal interactions between agents at each step. We validate our approach on a suite of more dynamic merging scenarios, finding that our approach avoids the $\textit{frozen robot problem}$ which is pervasive in conventional planners. Our approach also outperforms the previous state-of-the-art in CARLA on challenging dense traffic scenarios when evaluated at realistic speeds.
Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous Driving and Zero-Shot Instruction Following
Yang, Brian, Su, Huangyuan, Gkanatsios, Nikolaos, Ke, Tsung-Wei, Jain, Ayush, Schneider, Jeff, Fragkiadaki, Katerina
Diffusion models excel at modeling complex and multimodal trajectory distributions for decision-making and control. Reward-gradient guided denoising has been recently proposed to generate trajectories that maximize both a differentiable reward function and the likelihood under the data distribution captured by a diffusion model. Reward-gradient guided denoising requires a differentiable reward function fitted to both clean and noised samples, limiting its applicability as a general trajectory optimizer. In this paper, we propose DiffusionES, a method that combines gradient-free optimization with trajectory denoising to optimize black-box non-differentiable objectives while staying in the data manifold. Diffusion-ES samples trajectories during evolutionary search from a diffusion model and scores them using a black-box reward function. It mutates high-scoring trajectories using a truncated diffusion process that applies a small number of noising and denoising steps, allowing for much more efficient exploration of the solution space. We show that DiffusionES achieves state-of-the-art performance on nuPlan, an established closed-loop planning benchmark for autonomous driving. Diffusion-ES outperforms existing sampling-based planners, reactive deterministic or diffusion-based policies, and reward-gradient guidance. Additionally, we show that unlike prior guidance methods, our method can optimize non-differentiable language-shaped reward functions generated by few-shot LLM prompting. When guided by a human teacher that issues instructions to follow, our method can generate novel, highly complex behaviors, such as aggressive lane weaving, which are not present in the training data. This allows us to solve the hardest nuPlan scenarios which are beyond the capabilities of existing trajectory optimization methods and driving policies.