Schneider, Ian
Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends
Schneider, Ian, Xu, Hui, Benecke, Stephan, Patterson, David, Huang, Keguo, Ranganathan, Parthasarathy, Elsworth, Cooper
Specialized hardware accelerators aid the rapid advancement of artificial intelligence (AI), and their efficiency impacts AI's environmental sustainability. This study presents the first publication of a comprehensive AI accelerator life-cycle assessment (LCA) of greenhouse gas emissions, including the first publication of manufacturing emissions of an AI accelerator. Our analysis of five Tensor Processing Units (TPUs) encompasses all stages of the hardware lifespan - from raw material extraction, manufacturing, and disposal, to energy consumption during development, deployment, and serving of AI models. Using first-party data, it offers the most comprehensive evaluation to date of AI hardware's environmental impact. We include detailed descriptions of our LCA to act as a tutorial, road map, and inspiration for other computer engineers to perform similar LCAs to help us all understand the environmental impacts of our chips and of AI. A byproduct of this study is the new metric compute carbon intensity (CCI) that is helpful in evaluating AI hardware sustainability and in estimating the carbon footprint of training and inference. This study shows that CCI improves 3x from TPU v4i to TPU v6e. Moreover, while this paper's focus is on hardware, software advancements leverage and amplify these gains.
Comparison of Classical and Nonlinear Models for Short-Term Electricity Price Prediction
Fata, Elaheh, Kadota, Igor, Schneider, Ian
Electricity is bought and sold in wholesale markets at prices that fluctuate significantly. Short-term forecasting of electricity prices is an important endeavor because it helps electric utilities control risk and because it influences competitive strategy for generators. As the "smart grid" grows, short-term price forecasts are becoming an important input to bidding and control algorithms for battery operators and demand response aggregators. While the statistics and machine learning literature offers many proposed methods for electricity price prediction, there is no consensus supporting a single best approach. We test two contrasting machine learning approaches for predicting electricity prices, regression decision trees and recurrent neural networks (RNNs), and compare them to a more traditional ARIMA implementation. We conduct the analysis on a challenging dataset of electricity prices from ERCOT, in Texas, where price fluctuation is especially high. We find that regression decision trees in particular achieves high performance compared to the other methods, suggesting that regression trees should be more carefully considered for electricity price forecasting.