Schmidt, Michael
Evaluating the performance-deviation of itemKNN in RecBole and LensKit
Schmidt, Michael, Nitschke, Jannik, Prinz, Tim
This study examines the performance of item-based k-Nearest Neighbors (ItemKNN) algorithms in the RecBole and LensKit recommender system libraries. Using four data sets (Anime, Modcloth, ML-100K, and ML-1M), we assess each library's efficiency, accuracy, and scalability, focusing primarily on normalized discounted cumulative gain (nDCG). Our results show that RecBole outperforms LensKit on two of three metrics on the ML-100K data set: it achieved an 18% higher nDCG, 14% higher precision, and 35% lower recall. To ensure a fair comparison, we adjusted LensKit's nDCG calculation to match RecBole's method. This alignment made the performance more comparable, with LensKit achieving an nDCG of 0.2540 and RecBole 0.2674. Differences in similarity matrix calculations were identified as the main cause of performance deviations. After modifying LensKit to retain only the top K similar items, both libraries showed nearly identical nDCG values across all data sets. For instance, both achieved an nDCG of 0.2586 on the ML-1M data set with the same random seed. Initially, LensKit's original implementation only surpassed RecBole in the ModCloth dataset.
Structured Evaluation of Synthetic Tabular Data
Yang, Scott Cheng-Hsin, Eaves, Baxter, Schmidt, Michael, Swanson, Ken, Shafto, Patrick
Tabular data is common yet typically incomplete, small in volume, and access-restricted due to privacy concerns. Synthetic data generation offers potential solutions. Many metrics exist for evaluating the quality of synthetic tabular data; however, we lack an objective, coherent interpretation of the many metrics. To address this issue, we propose an evaluation framework with a single, mathematical objective that posits that the synthetic data should be drawn from the same distribution as the observed data. Through various structural decomposition of the objective, this framework allows us to reason for the first time the completeness of any set of metrics, as well as unifies existing metrics, including those that stem from fidelity considerations, downstream application, and model-based approaches. Moreover, the framework motivates model-free baselines and a new spectrum of metrics. We evaluate structurally informed synthesizers and synthesizers powered by deep learning. Using our structured framework, we show that synthetic data generators that explicitly represent tabular structure outperform other methods, especially on smaller datasets.
Word Importance Explains How Prompts Affect Language Model Outputs
Hackmann, Stefan, Mahmoudian, Haniyeh, Steadman, Mark, Schmidt, Michael
The emergence of large language models (LLMs) has revolutionized numerous applications across industries. However, their "black box" nature often hinders the understanding of how they make specific decisions, raising concerns about their transparency, reliability, and ethical use. This study presents a method to improve the explainability of LLMs by varying individual words in prompts to uncover their statistical impact on the model outputs. This approach, inspired by permutation importance for tabular data, masks each word in the system prompt and evaluates its effect on the outputs based on the available text scores aggregated over multiple user inputs. Unlike classical attention, word importance measures the impact of prompt words on arbitrarily-defined text scores, which enables decomposing the importance of words into the specific measures of interest--including bias, reading level, verbosity, etc. This procedure also enables measuring impact when attention weights are not available. To test the fidelity of this approach, we explore the effect of adding different suffixes to multiple different system prompts and comparing subsequent generations with different large language models. Results show that word importance scores are closely related to the expected suffix importances for multiple scoring functions.
3D Adversarial Augmentations for Robust Out-of-Domain Predictions
Lehner, Alexander, Gasperini, Stefano, Marcos-Ramiro, Alvaro, Schmidt, Michael, Navab, Nassir, Busam, Benjamin, Tombari, Federico
Since real-world training datasets cannot properly sample the long tail of the underlying data distribution, corner cases and rare out-of-domain samples can severely hinder the performance of state-of-the-art models. This problem becomes even more severe for dense tasks, such as 3D semantic segmentation, where points of non-standard objects can be confidently associated to the wrong class. In this work, we focus on improving the generalization to out-of-domain data. We achieve this by augmenting the training set with adversarial examples. First, we learn a set of vectors that deform the objects in an adversarial fashion. To prevent the adversarial examples from being too far from the existing data distribution, we preserve their plausibility through a series of constraints, ensuring sensor-awareness and shapes smoothness. Then, we perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model. We conduct extensive experiments across a variety of scenarios on data from KITTI, Waymo, and CrashD for 3D object detection, and on data from SemanticKITTI, Waymo, and nuScenes for 3D semantic segmentation. Despite training on a standard single dataset, our approach substantially improves the robustness and generalization of both 3D object detection and 3D semantic segmentation methods to out-of-domain data.
Segmenting Known Objects and Unseen Unknowns without Prior Knowledge
Gasperini, Stefano, Marcos-Ramiro, Alvaro, Schmidt, Michael, Navab, Nassir, Busam, Benjamin, Tombari, Federico
Panoptic segmentation methods assign a known class to each pixel given in input. Even for state-of-the-art approaches, this inevitably enforces decisions that systematically lead to wrong predictions for objects outside the training categories. However, robustness against out-of-distribution samples and corner cases is crucial in safety-critical settings to avoid dangerous consequences. Since real-world datasets cannot contain enough data points to adequately sample the long tail of the underlying distribution, models must be able to deal with unseen and unknown scenarios as well. Previous methods targeted this by re-identifying already-seen unlabeled objects. In this work, we propose the necessary step to extend segmentation with a new setting which we term holistic segmentation. Holistic segmentation aims to identify and separate objects of unseen, unknown categories into instances without any prior knowledge about them while performing panoptic segmentation of known classes. We tackle this new problem with U3HS, which finds unknowns as highly uncertain regions and clusters their corresponding instance-aware embeddings into individual objects. By doing so, for the first time in panoptic segmentation with unknown objects, our U3HS is trained without unknown categories, reducing assumptions and leaving the settings as unconstrained as in real-life scenarios. Extensive experiments on public data from MS COCO, Cityscapes, and Lost&Found demonstrate the effectiveness of U3HS for this new, challenging, and assumptions-free setting called holistic segmentation. Project page: https://holisticseg.github.io.
3D-VField: Adversarial Augmentation of Point Clouds for Domain Generalization in 3D Object Detection
Lehner, Alexander, Gasperini, Stefano, Marcos-Ramiro, Alvaro, Schmidt, Michael, Mahani, Mohammad-Ali Nikouei, Navab, Nassir, Busam, Benjamin, Tombari, Federico
As 3D object detection on point clouds relies on the geometrical relationships between the points, non-standard object shapes can hinder a method's detection capability. However, in safety-critical settings, robustness to out-of-domain and long-tail samples is fundamental to circumvent dangerous issues, such as the misdetection of damaged or rare cars. In this work, we substantially improve the generalization of 3D object detectors to out-of-domain data by deforming point clouds during training. We achieve this with 3D-VField: a novel data augmentation method that plausibly deforms objects via vector fields learned in an adversarial fashion. Our approach constrains 3D points to slide along their sensor view rays while neither adding nor removing any of them. The obtained vectors are transferable, sample-independent and preserve shape and occlusions. Despite training only on a standard dataset, such as KITTI, augmenting with our vector fields significantly improves the generalization to differently shaped objects and scenes. Towards this end, we propose and share CrashD: a synthetic dataset of realistic damaged and rare cars, with a variety of crash scenarios. Extensive experiments on KITTI, Waymo, our CrashD and SUN RGB-D show the generalizability of our techniques to out-of-domain data, different models and sensors, namely LiDAR and ToF cameras, for both indoor and outdoor scenes. Our CrashD dataset is available at https://crashd-cars.github.io.
Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data
Linzner, Dominik, Schmidt, Michael, Koeppl, Heinz
Continuous-time Bayesian Networks (CTBNs) represent a compact yet powerful framework for understanding multivariate time-series data. Given complete data, parameters and structure can be estimated efficiently in closed-form. However, if data is incomplete, the latent states of the CTBN have to be estimated by laboriously simulating the intractable dynamics of the assumed CTBN. This is a problem, especially for structure learning tasks, where this has to be done for each element of super-exponentially growing set of possible structures. In order to circumvent this notorious bottleneck, we develop a novel gradient-based approach to structure learning. Instead of sampling and scoring all possible structures individually, we assume the generator of the CTBN to be composed as a mixture of generators stemming from different structures. In this framework, structure learning can be performed via a gradient-based optimization of mixture weights. We combine this approach with a novel variational method that allows for the calculation of the marginal likelihood of a mixture in closed-form. We proof the scalability of our method by learning structures of previously inaccessible sizes from synthetic and real-world data.
On Chase Termination Beyond Stratification
Meier, Michael, Schmidt, Michael, Lausen, Georg
We study the termination problem of the chase algorithm, a central tool in various database problems such as the constraint implication problem, Conjunctive Query optimization, rewriting queries using views, data exchange, and data integration. The basic idea of the chase is, given a database instance and a set of constraints as input, to fix constraint violations in the database instance. It is well-known that, for an arbitrary set of constraints, the chase does not necessarily terminate (in general, it is even undecidable if it does or not). Addressing this issue, we review the limitations of existing sufficient termination conditions for the chase and develop new techniques that allow us to establish weaker sufficient conditions. In particular, we introduce two novel termination conditions called safety and inductive restriction, and use them to define the so-called T-hierarchy of termination conditions. We then study the interrelations of our termination conditions with previous conditions and the complexity of checking our conditions. This analysis leads to an algorithm that checks membership in a level of the T-hierarchy and accounts for the complexity of termination conditions. As another contribution, we study the problem of data-dependent chase termination and present sufficient termination conditions w.r.t. fixed instances. They might guarantee termination although the chase does not terminate in the general case. As an application of our techniques beyond those already mentioned, we transfer our results into the field of query answering over knowledge bases where the chase on the underlying database may not terminate, making existing algorithms applicable to broader classes of constraints.