Goto

Collaborating Authors

 Schmidt, Mark


Don't be so Monotone: Relaxing Stochastic Line Search in Over-Parameterized Models

arXiv.org Artificial Intelligence

Recent works have shown that line search methods can speed up Stochastic Gradient Descent (SGD) and Adam in modern over-parameterized settings. However, existing line searches may take steps that are smaller than necessary since they require a monotone decrease of the (mini-)batch objective function. We explore nonmonotone line search methods to relax this condition and possibly accept larger step sizes. Despite the lack of a monotonic decrease, we prove the same fast rates of convergence as in the monotone case. Our experiments show that nonmonotone methods improve the speed of convergence and generalization properties of SGD/Adam even beyond the previous monotone line searches. We propose a POlyak NOnmonotone Stochastic (PoNoS) method, obtained by combining a nonmonotone line search with a Polyak initial step size. Furthermore, we develop a new resetting technique that in the majority of the iterations reduces the amount of backtracks to zero while still maintaining a large initial step size. To the best of our knowledge, a first runtime comparison shows that the epoch-wise advantage of line-search-based methods gets reflected in the overall computational time.


Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm

arXiv.org Artificial Intelligence

We consider minimizing a smooth function subject to a summation constraint over its variables. By exploiting a connection between the greedy 2-coordinate update for this problem and equality-constrained steepest descent in the 1-norm, we give a convergence rate for greedy selection under a proximal Polyak-Lojasiewicz assumption that is faster than random selection and independent of the problem dimension $n$. We then consider minimizing with both a summation constraint and bound constraints, as arises in the support vector machine dual problem. Existing greedy rules for this setting either guarantee trivial progress only or require $O(n^2)$ time to compute. We show that bound- and summation-constrained steepest descent in the L1-norm guarantees more progress per iteration than previous rules and can be computed in only $O(n \log n)$ time.


Target-based Surrogates for Stochastic Optimization

arXiv.org Artificial Intelligence

We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the $SSO$ algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for $SSO$ when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of $SSO$.


Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking

arXiv.org Artificial Intelligence

The backtracking line-search is an effective technique to automatically tune the step-size in smooth optimization. It guarantees similar performance to using the theoretically optimal step-size. Many approaches have been developed to instead tune per-coordinate step-sizes, also known as diagonal preconditioners, but none of the existing methods are provably competitive with the optimal per-coordinate stepsizes. We propose multidimensional backtracking, an extension of the backtracking line-search to find good diagonal preconditioners for smooth convex problems. Our key insight is that the gradient with respect to the step-sizes, also known as hypergradients, yields separating hyperplanes that let us search for good preconditioners using cutting-plane methods. As black-box cutting-plane approaches like the ellipsoid method are computationally prohibitive, we develop an efficient algorithm tailored to our setting. Multidimensional backtracking is provably competitive with the best diagonal preconditioner and requires no manual tuning.


Noise Is Not the Main Factor Behind the Gap Between SGD and Adam on Transformers, but Sign Descent Might Be

arXiv.org Artificial Intelligence

The success of the Adam optimizer on a wide array of architectures has made it the default in settings where stochastic gradient descent (SGD) performs poorly. However, our theoretical understanding of this discrepancy is lagging, preventing the development of significant improvements on either algorithm. Recent work advances the hypothesis that Adam and other heuristics like gradient clipping outperform SGD on language tasks because the distribution of the error induced by sampling has heavy tails. This suggests that Adam outperform SGD because it uses a more robust gradient estimate. We evaluate this hypothesis by varying the batch size, up to the entire dataset, to control for stochasticity. We present evidence that stochasticity and heavy-tailed noise are not major factors in the performance gap between SGD and Adam. Rather, Adam performs better as the batch size increases, while SGD is less effective at taking advantage of the reduction in noise. This raises the question as to why Adam outperforms SGD in the full-batch setting. Through further investigation of simpler variants of SGD, we find that the behavior of Adam with large batches is similar to sign descent with momentum.


Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-\L ojasiewicz Condition

arXiv.org Artificial Intelligence

Modern machine learning models are often over-parameterized and as a result they can interpolate the training data. Under such a scenario, we study the convergence properties of a sampling-without-replacement variant of stochastic gradient descent (SGD) known as random reshuffling (RR). Unlike SGD that samples data with replacement at every iteration, RR chooses a random permutation of data at the beginning of each epoch and each iteration chooses the next sample from the permutation. For under-parameterized models, it has been shown RR can converge faster than SGD under certain assumptions. However, previous works do not show that RR outperforms SGD in over-parameterized settings except in some highly-restrictive scenarios. For the class of Polyak-\L ojasiewicz (PL) functions, we show that RR can outperform SGD in over-parameterized settings when either one of the following holds: (i) the number of samples ($n$) is less than the product of the condition number ($\kappa$) and the parameter ($\alpha$) of a weak growth condition (WGC), or (ii) $n$ is less than the parameter ($\rho$) of a strong growth condition (SGC).


Improved Policy Optimization for Online Imitation Learning

arXiv.org Artificial Intelligence

We consider online imitation learning (OIL), where the task is to find a policy that imitates the behavior of an expert via active interaction with the environment. We aim to bridge the gap between the theory and practice of policy optimization algorithms for OIL by analyzing one of the most popular OIL algorithms, DAGGER. Specifically, if the class of policies is sufficiently expressive to contain the expert policy, we prove that DAGGER achieves constant regret. Unlike previous bounds that require the losses to be strongly-convex, our result only requires the weaker assumption that the losses be strongly-convex with respect to the policy's sufficient statistics (not its parameterization). In order to ensure convergence for a wider class of policies and losses, we augment DAGGER with an additional regularization term. In particular, we propose a variant of Follow-the-Regularized-Leader (FTRL) and its adaptive variant for OIL and develop a memory-efficient implementation, which matches the memory requirements of FTL. Assuming that the loss functions are smooth and convex with respect to the parameters of the policy, we also prove that FTRL achieves constant regret for any sufficiently expressive policy class, while retaining $O(\sqrt{T})$ regret in the worst-case. We demonstrate the effectiveness of these algorithms with experiments on synthetic and high-dimensional control tasks.


Structured second-order methods via natural gradient descent

arXiv.org Machine Learning

In this paper, we propose new structured second-order methods and structured adaptive-gradient methods obtained by performing natural-gradient descent on structured parameter spaces. Natural-gradient descent is an attractive approach to design new algorithms in many settings such as gradient-free, adaptive-gradient, and second-order methods. Our structured methods not only enjoy a structural invariance but also admit a simple expression. Finally, we test the efficiency of our proposed methods on both deterministic non-convex problems and deep learning problems.


SVRG Meets AdaGrad: Painless Variance Reduction

arXiv.org Machine Learning

Variance reduction (VR) methods for finite-sum minimization typically require the knowledge of problem-dependent constants that are often unknown and difficult to estimate. To address this, we use ideas from adaptive gradient methods to propose AdaSVRG, which is a fully adaptive variant of SVRG, a common VR method. AdaSVRG uses AdaGrad in the inner loop of SVRG, making it robust to the choice of step-size, and allowing it to adaptively determine the length of each inner-loop. When minimizing a sum of $n$ smooth convex functions, we prove that AdaSVRG requires $O(n + 1/\epsilon)$ gradient evaluations to achieve an $\epsilon$-suboptimality, matching the typical rate, but without needing to know problem-dependent constants. However, VR methods including AdaSVRG are slower than SGD when used with over-parameterized models capable of interpolating the training data. Hence, we also propose a hybrid algorithm that can adaptively switch from AdaGrad to AdaSVRG, achieving the best of both stochastic gradient and VR methods, but without needing to tune their step-sizes. Via experiments on synthetic and standard real-world datasets, we validate the robustness and effectiveness of AdaSVRG, demonstrating its superior performance over other "tune-free" VR methods.


Tractable structured natural gradient descent using local parameterizations

arXiv.org Machine Learning

Natural-gradient descent on structured parameter spaces (e.g., low-rank covariances) is computationally challenging due to complicated inverse Fisher-matrix computations. We address this issue for optimization, inference, and search problems by using \emph{local-parameter coordinates}. Our method generalizes an existing evolutionary-strategy method, recovers Newton and Riemannian-gradient methods as special cases, and also yields new tractable natural-gradient algorithms for learning flexible covariance structures of Gaussian and Wishart-based distributions. We show results on a range of applications on deep learning, variational inference, and evolution strategies. Our work opens a new direction for scalable structured geometric methods via local parameterizations.