Schmeckpeper, Karl
On-Robot Reinforcement Learning with Goal-Contrastive Rewards
Biza, Ondrej, Weng, Thomas, Sun, Lingfeng, Schmeckpeper, Karl, Kelestemur, Tarik, Ma, Yecheng Jason, Platt, Robert, van de Meent, Jan-Willem, Wong, Lawson L. S.
Reinforcement Learning (RL) has the potential to enable robots to learn from their own actions in the real world. Unfortunately, RL can be prohibitively expensive, in terms of on-robot runtime, due to inefficient exploration when learning from a sparse reward signal. Designing dense reward functions is labour-intensive and requires domain expertise. In our work, we propose GCR (Goal-Contrastive Rewards), a dense reward function learning method that can be trained on passive video demonstrations. By using videos without actions, our method is easier to scale, as we can use arbitrary videos. GCR combines two loss functions, an implicit value loss function that models how the reward increases when traversing a successful trajectory, and a goal-contrastive loss that discriminates between successful and failed trajectories. We perform experiments in simulated manipulation environments across RoboMimic and MimicGen tasks, as well as in the real world using a Franka arm and a Spot quadruped. We find that GCR leads to a more-sample efficient RL, enabling model-free RL to solve about twice as many tasks as our baseline reward learning methods. We also demonstrate positive cross-embodiment transfer from videos of people and of other robots performing a task. Appendix: \url{https://tinyurl.com/gcr-appendix-2}.
Imagination Policy: Using Generative Point Cloud Models for Learning Manipulation Policies
Huang, Haojie, Schmeckpeper, Karl, Wang, Dian, Biza, Ondrej, Qian, Yaoyao, Liu, Haotian, Jia, Mingxi, Platt, Robert, Walters, Robin
Humans can imagine goal states during planning and perform actions to match those goals. In this work, we propose Imagination Policy, a novel multi-task key-frame policy network for solving high-precision pick and place tasks. Instead of learning actions directly, Imagination Policy generates point clouds to imagine desired states which are then translated to actions using rigid action estimation. This transforms action inference into a local generative task. We leverage pick and place symmetries underlying the tasks in the generation process and achieve extremely high sample efficiency and generalizability to unseen configurations. Finally, we demonstrate state-of-the-art performance across various tasks on the RLbench benchmark compared with several strong baselines.
A Metacognitive Approach to Out-of-Distribution Detection for Segmentation
Gummadi, Meghna, Kent, Cassandra, Schmeckpeper, Karl, Eaton, Eric
Despite outstanding semantic scene segmentation in closed-worlds, deep neural networks segment novel instances poorly, which is required for autonomous agents acting in an open world. To improve out-of-distribution (OOD) detection for segmentation, we introduce a metacognitive approach in the form of a lightweight module that leverages entropy measures, segmentation predictions, and spatial context to characterize the segmentation model's uncertainty and detect pixel-wise OOD data in real-time. Additionally, our approach incorporates a novel method of generating synthetic OOD data in context with in-distribution data, which we use to fine-tune existing segmentation models with maximum entropy training. This further improves the metacognitive module's performance without requiring access to OOD data while enabling compatibility with established pre-trained models. Our resulting approach can reliably detect OOD instances in a scene, as shown by state-of-the-art performance on OOD detection for semantic segmentation benchmarks.
Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets
Ebert, Frederik, Yang, Yanlai, Schmeckpeper, Karl, Bucher, Bernadette, Georgakis, Georgios, Daniilidis, Kostas, Finn, Chelsea, Levine, Sergey
Robot learning holds the promise of learning policies that generalize broadly. However, such generalization requires sufficiently diverse datasets of the task of interest, which can be prohibitively expensive to collect. In other fields, such as computer vision, it is common to utilize shared, reusable datasets, such as ImageNet, to overcome this challenge, but this has proven difficult in robotics. In this paper, we ask: what would it take to enable practical data reuse in robotics for end-to-end skill learning? We hypothesize that the key is to use datasets with multiple tasks and multiple domains, such that a new user that wants to train their robot to perform a new task in a new domain can include this dataset in their training process and benefit from cross-task and cross-domain generalization. To evaluate this hypothesis, we collect a large multi-domain and multi-task dataset, with 7,200 demonstrations constituting 71 tasks across 10 environments, and empirically study how this data can improve the learning of new tasks in new environments. We find that jointly training with the proposed dataset and 50 demonstrations of a never-before-seen task in a new domain on average leads to a 2x improvement in success rate compared to using target domain data alone. We also find that data for only a few tasks in a new domain can bridge the domain gap and make it possible for a robot to perform a variety of prior tasks that were only seen in other domains. These results suggest that reusing diverse multi-task and multi-domain datasets, including our open-source dataset, may pave the way for broader robot generalization, eliminating the need to re-collect data for each new robot learning project.
Reinforcement Learning with Videos: Combining Offline Observations with Interaction
Schmeckpeper, Karl, Rybkin, Oleh, Daniilidis, Kostas, Levine, Sergey, Finn, Chelsea
Reinforcement learning is a powerful framework for robots to acquire skills from experience, but often requires a substantial amount of online data collection. As a result, it is difficult to collect sufficiently diverse experiences that are needed for robots to generalize broadly. Videos of humans, on the other hand, are a readily available source of broad and interesting experiences. In this paper, we consider the question: can we perform reinforcement learning directly on experience collected by humans? This problem is particularly difficult, as such videos are not annotated with actions and exhibit substantial visual domain shift relative to the robot's embodiment. To address these challenges, we propose a framework for reinforcement learning with videos (RLV). RLV learns a policy and value function using experience collected by humans in combination with data collected by robots. In our experiments, we find that RLV is able to leverage such videos to learn challenging vision-based skills with less than half as many samples as RL methods that learn from scratch.