Goto

Collaborating Authors

 Schlegel, David


Approximate Inference for Constructing Astronomical Catalogs from Images

arXiv.org Machine Learning

We present a new, fully generative model for constructing astronomical catalogs from optical telescope image sets. Each pixel intensity is treated as a Poisson random variable with a rate parameter that depends on the latent properties of stars and galaxies. These latent properties are themselves random, with scientific prior distributions constructed from large ancillary datasets. We compare two procedures for posterior inference: Markov chain Monte Carlo (MCMC) and variational inference (VI). MCMC excels at quantifying uncertainty while VI is 1000x faster. Both procedures outperform the current state-of-the-art method for measuring celestial bodies' colors, shapes, and morphologies. On a supercomputer, the VI procedure efficiently uses 665,000 CPU cores (1.3 million hardware threads) to construct an astronomical catalog from 50 terabytes of images.


Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference

arXiv.org Machine Learning

Celeste is a procedure for inferring astronomical catalogs that attains state-of-the-art scientific results. To date, Celeste has been scaled to at most hundreds of megabytes of astronomical images: Bayesian posterior inference is notoriously demanding computationally. In this paper, we report on a scalable, parallel version of Celeste, suitable for learning catalogs from modern large-scale astronomical datasets. Our algorithmic innovations include a fast numerical optimization routine for Bayesian posterior inference and a statistically efficient scheme for decomposing astronomical optimization problems into subproblems. Our scalable implementation is written entirely in Julia, a new high-level dynamic programming language designed for scientific and numerical computing. We use Julia's high-level constructs for shared and distributed memory parallelism, and demonstrate effective load balancing and efficient scaling on up to 8192 Xeon cores on the NERSC Cori supercomputer.


A Gaussian Process Model of Quasar Spectral Energy Distributions

Neural Information Processing Systems

We propose a method for combining two sources of astronomical data, spectroscopy and photometry, that carry information about sources of light (e.g., stars, galaxies, and quasars) at extremely different spectral resolutions. Our model treats the spectral energy distribution (SED) of the radiation from a source as a latent variable that jointly explains both photometric and spectroscopic observations. We place a flexible, nonparametric prior over the SED of a light source that admits a physically interpretable decomposition, and allows us to tractably perform inference. We use our model to predict the distribution of the redshift of a quasar from five-band (low spectral resolution) photometric data, the so called ``photo-z'' problem. Our method shows that tools from machine learning and Bayesian statistics allow us to leverage multiple resolutions of information to make accurate predictions with well-characterized uncertainties.


Celeste: Variational inference for a generative model of astronomical images

arXiv.org Machine Learning

We present a new, fully generative model of optical telescope image sets, along with a variational procedure for inference. Each pixel intensity is treated as a Poisson random variable, with a rate parameter dependent on latent properties of stars and galaxies. Key latent properties are themselves random, with scientific prior distributions constructed from large ancillary data sets. We check our approach on synthetic images. We also run it on images from a major sky survey, where it exceeds the performance of the current state-of-the-art method for locating celestial bodies and measuring their colors.