Goto

Collaborating Authors

 Schindler, Alexander


Deepfake Audio Detection Using Spectrogram-based Feature and Ensemble of Deep Learning Models

arXiv.org Artificial Intelligence

In this paper, we propose a deep learning based system for the task of deepfake audio detection. In particular, the draw input audio is first transformed into various spectrograms using three transformation methods of Short-time Fourier Transform (STFT), Constant-Q Transform (CQT), Wavelet Transform (WT) combined with different auditory-based filters of Mel, Gammatone, linear filters (LF), and discrete cosine transform (DCT). Given the spectrograms, we evaluate a wide range of classification models based on three deep learning approaches. The first approach is to train directly the spectrograms using our proposed baseline models of CNN-based model (CNN-baseline), RNN-based model (RNN-baseline), C-RNN model (C-RNN baseline). Meanwhile, the second approach is transfer learning from computer vision models such as ResNet-18, MobileNet-V3, EfficientNet-B0, DenseNet-121, SuffleNet-V2, Swint, Convnext-Tiny, GoogLeNet, MNASsnet, RegNet. In the third approach, we leverage the state-of-the-art audio pre-trained models of Whisper, Seamless, Speechbrain, and Pyannote to extract audio embeddings from the input spectrograms. Then, the audio embeddings are explored by a Multilayer perceptron (MLP) model to detect the fake or real audio samples. Finally, high-performance deep learning models from these approaches are fused to achieve the best performance. We evaluated our proposed models on ASVspoof 2019 benchmark dataset. Our best ensemble model achieved an Equal Error Rate (EER) of 0.03, which is highly competitive to top-performing systems in the ASVspoofing 2019 challenge. Experimental results also highlight the potential of selective spectrograms and deep learning approaches to enhance the task of audio deepfake detection.


A Toolchain for Comprehensive Audio/Video Analysis Using Deep Learning Based Multimodal Approach (A use case of riot or violent context detection)

arXiv.org Artificial Intelligence

In this paper, we present a toolchain for a comprehensive audio/video analysis by leveraging deep learning based multimodal approach. To this end, different specific tasks of Speech to Text (S2T), Acoustic Scene Classification (ASC), Acoustic Event Detection (AED), Visual Object Detection (VOD), Image Captioning (IC), and Video Captioning (VC) are conducted and integrated into the toolchain. By combining individual tasks and analyzing both audio \& visual data extracted from input video, the toolchain offers various audio/video-based applications: Two general applications of audio/video clustering, comprehensive audio/video summary and a specific application of riot or violent context detection. Furthermore, the toolchain presents a flexible and adaptable architecture that is effective to integrate new models for further audio/video-based applications.


LSTM-based Deep Neural Network With A Focus on Sentence Representation for Sequential Sentence Classification in Medical Scientific Abstracts

arXiv.org Artificial Intelligence

The Sequential Sentence Classification task within the domain of medical abstracts, termed as SSC, involves the categorization of sentences into pre-defined headings based on their roles in conveying critical information in the abstract. In the SSC task, sentences are often sequentially related to each other. For this reason, the role of sentence embedding is crucial for capturing both the semantic information between words in the sentence and the contextual relationship of sentences within the abstract to provide a comprehensive representation for better classification. In this paper, we present a hierarchical deep learning model for the SSC task. First, we propose a LSTM-based network with multiple feature branches to create well-presented sentence embeddings at the sentence level. To perform the sequence of sentences, a convolutional-recurrent neural network (C-RNN) at the abstract level and a multi-layer perception network (MLP) at the segment level are developed that further enhance the model performance. Additionally, an ablation study is also conducted to evaluate the contribution of individual component in the entire network to the model performance at different levels. Our proposed system is very competitive to the state-of-the-art systems and further improve F1 scores of the baseline by 1.0%, 2.8%, and 2.6% on the benchmark datasets PudMed 200K RCT, PudMed 20K RCT and NICTA-PIBOSO, respectively.


Landslide Detection and Segmentation Using Remote Sensing Images and Deep Neural Network

arXiv.org Artificial Intelligence

Knowledge about historic landslide event occurrence is important for supporting disaster risk reduction strategies. Building upon findings from 2022 Landslide4Sense Competition, we propose a deep neural network based system for landslide detection and segmentation from multisource remote sensing image input. We use a U-Net trained with Cross Entropy loss as baseline model. We then improve the U-Net baseline model by leveraging a wide range of deep learning techniques. In particular, we conduct feature engineering by generating new band data from the original bands, which helps to enhance the quality of remote sensing image input. Regarding the network architecture, we replace traditional convolutional layers in the U-Net baseline by a residual-convolutional layer. We also propose an attention layer which leverages the multi-head attention scheme. Additionally, we generate multiple output masks with three different resolutions, which creates an ensemble of three outputs in the inference process to enhance the performance. Finally, we propose a combined loss function which leverages Focal loss and IoU loss to train the network. Our experiments on the development set of the Landslide4Sense challenge achieve an F1 score and an mIoU score of 84.07 and 76.07, respectively. Our best model setup outperforms the challenge baseline and the proposed U-Net baseline, improving the F1 score/mIoU score by 6.8/7.4 and 10.5/8.8, respectively.


Low-complexity deep learning frameworks for acoustic scene classification using teacher-student scheme and multiple spectrograms

arXiv.org Artificial Intelligence

In this technical report, a low-complexity deep learning system for acoustic scene classification (ASC) is presented. The proposed system comprises two main phases: (Phase I) Training a teacher network; and (Phase II) training a student network using distilled knowledge from the teacher. In the first phase, the teacher, which presents a large footprint model, is trained. After training the teacher, the embeddings, which are the feature map of the second last layer of the teacher, are extracted. In the second phase, the student network, which presents a low complexity model, is trained with the embeddings extracted from the teacher. Our experiments conducted on DCASE 2023 Task 1 Development dataset have fulfilled the requirement of low-complexity and achieved the best classification accuracy of 57.4%, improving DCASE baseline by 14.5%.


A Light-weight Deep Learning Model for Remote Sensing Image Classification

arXiv.org Artificial Intelligence

In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the aerial scene of a remote sensing image. To this end, we first valuate various benchmark convolutional neural network (CNN) architectures: MobileNet V1/V2, ResNet 50/151V2, InceptionV3/InceptionResNetV2, EfficientNet B0/B7, DenseNet 121/201, ConNeXt Tiny/Large. Then, the best performing models are selected to train a compact model in a teacher-student arrangement. The knowledge distillation from the teacher aims to achieve high performance with significantly reduced complexity. By conducting extensive experiments on the NWPU-RESISC45 benchmark, our proposed teacher-student models outperforms the state-of-the-art systems, and has potential to be applied on a wide rage of edge devices.


Predicting Time-to-Failure of Plasma Etching Equipment using Machine Learning

arXiv.org Machine Learning

Predicting unscheduled breakdowns of plasma etching equipment can reduce maintenance costs and production losses in the semiconductor industry. However, plasma etching is a complex procedure and it is hard to capture all relevant equipment properties and behaviors in a single physical model. Machine learning offers an alternative for predicting upcoming machine failures based on relevant data points. In this paper, we describe three different machine learning tasks that can be used for that purpose: (i) predicting Time-To-Failure (TTF), (ii) predicting health state, and (iii) predicting TTF intervals of an equipment. Our results show that trained machine learning models can outperform benchmarks resembling human judgments in all three tasks. This suggests that machine learning offers a viable alternative to currently deployed plasma etching equipment maintenance strategies and decision making processes.


Large Scale Audio-Visual Video Analytics Platform for Forensic Investigations of Terroristic Attacks

arXiv.org Artificial Intelligence

The forensic investigation of a terrorist attack poses a huge challenge to the investigative authorities, as several thousand hours of video footage need to be spotted. To assist law enforcement agencies (LEA) in identifying suspects and securing evidences, we present a platform which fuses information of surveillance cameras and video uploads from eyewitnesses. The platform integrates analytical modules for different input-modalities on a scalable architecture. Videos are analyzed according their acoustic and visual content. Specifically, Audio Event Detection is applied to index the content according to attack-specific acoustic concepts. Audio similarity search is utilized to identify similar video sequences recorded from different perspectives. Visual object detection and tracking are used to index the content according to relevant concepts. The heterogeneous results of the analytical modules are fused into a distributed index of visual and acoustic concepts to facilitate rapid start of investigations, following traits and investigating witness reports.