Goto

Collaborating Authors

 Schilter, Oliver


ChemCrow: Augmenting large-language models with chemistry tools

arXiv.org Machine Learning

Over the last decades, excellent computational chemistry tools have been developed. Integrating them into a single platform with enhanced accessibility could help reaching their full potential by overcoming steep learning curves. Recently, large-language models (LLMs) have shown strong performance in tasks across domains, but struggle with chemistry-related problems. Moreover, these models lack access to external knowledge sources, limiting their usefulness in scientific applications. In this study, we introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery, and materials design. By integrating 18 expert-designed tools, ChemCrow augments the LLM performance in chemistry, and new capabilities emerge. Our agent autonomously planned and executed the syntheses of an insect repellent, three organocatalysts, and guided the discovery of a novel chromophore. Our evaluation, including both LLM and expert assessments, demonstrates ChemCrow's effectiveness in automating a diverse set of chemical tasks. Surprisingly, we find that GPT-4 as an evaluator cannot distinguish between clearly wrong GPT-4 completions and Chemcrow's performance. Our work not only aids expert chemists and lowers barriers for non-experts, but also fosters scientific advancement by bridging the gap between experimental and computational chemistry.


Accelerating Material Design with the Generative Toolkit for Scientific Discovery

arXiv.org Artificial Intelligence

The rapid technological progress in the last centuries has been largely fueled by the success of the scientific method. However, in some of the most important fields, such as material or drug discovery, the productivity has been decreasing dramatically (Smietana et al., 2016) and by today it can take almost a decade to discover a new material and cost upwards of $10-$100 million. One of the most daunting challenges in materials discovery is hypothesis generation. The reservoir of natural products and their derivatives has been largely emptied (Atanasov et al., 2021) and bottom-up human-driven hypotheses have shown that it is extremely challenging to identify and select novel and useful candidates in search spaces that are overwhelming in size, e.g., the chemical space for drug-like molecules is estimated to contain > 10