Goto

Collaborating Authors

 Schilling-Wilhelmi, Mara


Lessons from the trenches on evaluating machine-learning systems in materials science

arXiv.org Artificial Intelligence

Measurements are fundamental to knowledge creation in science, enabling consistent sharing of findings and serving as the foundation for scientific discovery. As machine learning systems increasingly transform scientific fields, the question of how to effectively evaluate these systems becomes crucial for ensuring reliable progress. In this review, we examine the current state and future directions of evaluation frameworks for machine learning in science. We organize the review around a broadly applicable framework for evaluating machine learning systems through the lens of statistical measurement theory, using materials science as our primary context for examples and case studies. We identify key challenges common across machine learning evaluation such as construct validity, data quality issues, metric design limitations, and benchmark maintenance problems that can lead to phantom progress when evaluation frameworks fail to capture real-world performance needs. By examining both traditional benchmarks and emerging evaluation approaches, we demonstrate how evaluation choices fundamentally shape not only our measurements but also research priorities and scientific progress. These findings reveal the critical need for transparency in evaluation design and reporting, leading us to propose evaluation cards as a structured approach to documenting measurement choices and limitations. Our work highlights the importance of developing a more diverse toolbox of evaluation techniques for machine learning in materials science, while offering insights that can inform evaluation practices in other scientific domains where similar challenges exist.


Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

arXiv.org Artificial Intelligence

Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.


Probing the limitations of multimodal language models for chemistry and materials research

arXiv.org Artificial Intelligence

Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis. A key capability for such systems is the ability to process and reason about scientific information in both visual and textual forms - from interpreting spectroscopic data to understanding laboratory setups. Here, we introduce MaCBench, a comprehensive benchmark for evaluating how vision-language models handle real-world chemistry and materials science tasks across three core aspects: data extraction, experimental understanding, and results interpretation. Through a systematic evaluation of leading models, we find that while these systems show promising capabilities in basic perception tasks - achieving near-perfect performance in equipment identification and standardized data extraction - they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis, and multi-step logical inference. Our insights have important implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.