Schilling, Malte
The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG Applications Using an LLM's Internal States
Ridder, Fabian, Schilling, Malte
Detecting hallucinations in large language models (LLMs) is critical for enhancing their reliability and trustworthiness. Most research focuses on hallucinations as deviations from information seen during training. However, the opaque nature of an LLM's parametric knowledge complicates the understanding of why generated texts appear ungrounded: The LLM might not have picked up the necessary knowledge from large and often inaccessible datasets, or the information might have been changed or contradicted during further training. Our focus is on hallucinations involving information not used in training, which we determine by using recency to ensure the information emerged after a cut-off date. This study investigates these hallucinations by detecting them at sentence level using different internal states of various LLMs. We present HalluRAG, a dataset designed to train classifiers on these hallucinations. Depending on the model and quantization, MLPs trained on HalluRAG detect hallucinations with test accuracies ranging up to 75 %, with Mistral-7B-Instruct-v0.1 achieving the highest test accuracies. Our results show that IAVs detect hallucinations as effectively as CEVs and reveal that answerable and unanswerable prompts are encoded differently as separate classifiers for these categories improved accuracy. However, HalluRAG showed some limited generalizability, advocating for more diversity in datasets on hallucinations.
A Graph-based U-Net Model for Predicting Traffic in unseen Cities
Hermes, Luca, Hammer, Barbara, Melnik, Andrew, Velioglu, Riza, Vieth, Markus, Schilling, Malte
Accurate traffic prediction is a key ingredient to enable traffic management like rerouting cars to reduce road congestion or regulating traffic via dynamic speed limits to maintain a steady flow. A way to represent traffic data is in the form of temporally changing heatmaps visualizing attributes of traffic, such as speed and volume. In recent works, U-Net models have shown SOTA performance on traffic forecasting from heatmaps. We propose to combine the U-Net architecture with graph layers which improves spatial generalization to unseen road networks compared to a Vanilla U-Net. In particular, we specialize existing graph operations to be sensitive to geographical topology and generalize pooling and upsampling operations to be applicable to graphs.
Decentralized Deep Reinforcement Learning for a Distributed and Adaptive Locomotion Controller of a Hexapod Robot
Schilling, Malte, Konen, Kai, Ohl, Frank W., Korthals, Timo
Locomotion is a prime example for adaptive behavior in animals and biological control principles have inspired control architectures for legged robots. While machine learning has been successfully applied to many tasks in recent years, Deep Reinforcement Learning approaches still appear to struggle when applied to real world robots in continuous control tasks and in particular do not appear as robust solutions that can handle uncertainties well. Therefore, there is a new interest in incorporating biological principles into such learning architectures. While inducing a hierarchical organization as found in motor control has shown already some success, we here propose a decentralized organization as found in insect motor control for coordination of different legs. A decentralized and distributed architecture is introduced on a simulated hexapod robot and the details of the controller are learned through Deep Reinforcement Learning. We first show that such a concurrent local structure is able to learn better walking behavior. Secondly, that the simpler organization is learned faster compared to holistic approaches.
From Crystallized Adaptivity to Fluid Adaptivity in Deep Reinforcement Learning -- Insights from Biological Systems on Adaptive Flexibility
Schilling, Malte, Ritter, Helge, Ohl, Frank W.
Recent developments in machine-learning algorithms have led to impressive performance increases in many traditional application scenarios of artificial intelligence research. In the area of deep reinforcement learning, deep learning functional architectures are combined with incremental learning schemes for sequential tasks that include interaction-based, but often delayed feedback. Despite their impressive successes, modern machine-learning approaches, including deep reinforcement learning, still perform weakly when compared to flexibly adaptive biological systems in certain naturally occurring scenarios. Such scenarios include transfers to environments different than the ones in which the training took place or environments that dynamically change, both of which are often mastered by biological systems through a capability that we here term "fluid adaptivity" to contrast it from the much slower adaptivity ("crystallized adaptivity") of the prior learning from which the behavior emerged. In this article, we derive and discuss research strategies, based on analyzes of fluid adaptivity in biological systems and its neuronal modeling, that might aid in equipping future artificially intelligent systems with capabilities of fluid adaptivity more similar to those seen in some biologically intelligent systems. A key component of this research strategy is the dynamization of the problem space itself and the implementation of this dynamization by suitably designed flexibly interacting modules.
Setup of a Recurrent Neural Network as a Body Model for Solving Inverse and Forward Kinematics as well as Dynamics for a Redundant Manipulator
Schilling, Malte
An internal model of the own body can be assumed a fundamental and evolutionary-early representation as it is present throughout the animal kingdom. Such functional models are, on the one hand, required in motor control, for example solving the inverse kinematic or dynamic task in goal-directed movements or a forward task in ballistic movements. On the other hand, such models are recruited in cognitive tasks as are planning ahead or observation of actions of a conspecific. Here, we present a functional internal body model that is based on the Mean of Multiple Computations principle. For the first time such a model is completely realized in a recurrent neural network as necessary normalization steps are integrated into the neural model itself. Secondly, a dynamic extension is applied to the model. It is shown how the neural network solves a series of inverse tasks. Furthermore, emerging representation in transformational layers are analyzed that show a form of prototypical population-coding as found in place or direction cells.
Modularization of End-to-End Learning: Case Study in Arcade Games
Melnik, Andrew, Fleer, Sascha, Schilling, Malte, Ritter, Helge
Complex environments and tasks pose a difficult problem for holistic end-to-end learning approaches. Decomposition of an environment into interacting controllable and non-controllable objects allows supervised learning for non-controllable objects and universal value function approximator learning for controllable objects. Such decomposition should lead to a shorter learning time and better generalisation capability. Here, we consider arcade-game environments as sets of interacting objects (controllable, non-controllable) and propose a set of functional modules that are specialized on mastering different types of interactions in a broad range of environments. The modules utilize regression, supervised learning, and reinforcement learning algorithms. Results of this case study in different Atari games suggest that human-level performance can be achieved by a learning agent within a human amount of game experience (10-15 minutes game time) when a proper decomposition of an environment or a task is provided. However, automatization of such decomposition remains a challenging problem. This case study shows how a model of a causal structure underlying an environment or a task can benefit learning time and generalization capability of the agent, and argues in favor of exploiting modular structure in contrast to using pure end-to-end learning approaches.
Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments
Kidziński, Łukasz, Mohanty, Sharada Prasanna, Ong, Carmichael, Huang, Zhewei, Zhou, Shuchang, Pechenko, Anton, Stelmaszczyk, Adam, Jarosik, Piotr, Pavlov, Mikhail, Kolesnikov, Sergey, Plis, Sergey, Chen, Zhibo, Zhang, Zhizheng, Chen, Jiale, Shi, Jun, Zheng, Zhuobin, Yuan, Chun, Lin, Zhihui, Michalewski, Henryk, Miłoś, Piotr, Osiński, Błażej, Melnik, Andrew, Schilling, Malte, Ritter, Helge, Carroll, Sean, Hicks, Jennifer, Levine, Sergey, Salathé, Marcel, Delp, Scott
In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each of the eight teams implemented different modifications of the known algorithms.
Communicating with Executable Action Representations
Schilling, Malte (University of Bielefeld and International Computer Science Institute Berkeley) | Narayanan, Srini (International Computer Science Institute Berkeley)
Natural language instructions are often underspecified and imprecise which makes them hard to understand for an artificial agent. In this article we present a system of connected knowledge representations that is used to control a robot through instructions. As actions are a key component of instructions and the robot's behavior the representation of action is central in our approach. First, the system consists of a conceptual schema representation which provides a parameter interface for action. Second, we present an intermediate representation of the temporal structure of action and show how this generic action structure can be mapped to detailed action controllers as well as language.