Goto

Collaborating Authors

 Scheutz, Matthias


FLEX: A Framework for Learning Robot-Agnostic Force-based Skills Involving Sustained Contact Object Manipulation

arXiv.org Artificial Intelligence

Learning to manipulate objects efficiently, particularly those involving sustained contact (e.g., pushing, sliding) and articulated parts (e.g., drawers, doors), presents significant challenges. Traditional methods, such as robot-centric reinforcement learning (RL), imitation learning, and hybrid techniques, require massive training and often struggle to generalize across different objects and robot platforms. We propose a novel framework for learning object-centric manipulation policies in force space, decoupling the robot from the object. By directly applying forces to selected regions of the object, our method simplifies the action space, reduces unnecessary exploration, and decreases simulation overhead. This approach, trained in simulation on a small set of representative objects, captures object dynamics -- such as joint configurations -- allowing policies to generalize effectively to new, unseen objects. Decoupling these policies from robot-specific dynamics enables direct transfer to different robotic platforms (e.g., Kinova, Panda, UR5) without retraining. Our evaluations demonstrate that the method significantly outperforms baselines, achieving over an order of magnitude improvement in training efficiency compared to other state-of-the-art methods. Additionally, operating in force space enhances policy transferability across diverse robot platforms and object types. We further showcase the applicability of our method in a real-world robotic setting. For supplementary materials and videos, please visit: https://tufts-ai-robotics-group.github.io/FLEX/


Curiosity-Driven Imagination: Discovering Plan Operators and Learning Associated Policies for Open-World Adaptation

arXiv.org Artificial Intelligence

Adapting quickly to dynamic, uncertain environments-often called "open worlds"-remains a major challenge in robotics. Traditional Task and Motion Planning (TAMP) approaches struggle to cope with unforeseen changes, are data-inefficient when adapting, and do not leverage world models during learning. We address this issue with a hybrid planning and learning system that integrates two models: a low level neural network based model that learns stochastic transitions and drives exploration via an Intrinsic Curiosity Module (ICM), and a high level symbolic planning model that captures abstract transitions using operators, enabling the agent to plan in an "imaginary" space and generate reward machines. Our evaluation in a robotic manipulation domain with sequential novelty injections demonstrates that our approach converges faster and outperforms state-of-the-art hybrid methods.


Probing a Vision-Language-Action Model for Symbolic States and Integration into a Cognitive Architecture

arXiv.org Artificial Intelligence

Vision-language-action (VLA) models hold promise as generalist robotics solutions by translating visual and linguistic inputs into robot actions, yet they lack reliability due to their black-box nature and sensitivity to environmental changes. In contrast, cognitive architectures (CA) excel in symbolic reasoning and state monitoring but are constrained by rigid predefined execution. This work bridges these approaches by probing OpenVLA's hidden layers to uncover symbolic representations of object properties, relations, and action states, enabling integration with a CA for enhanced interpretability and robustness. Through experiments on LIBERO-spatial pick-and-place tasks, we analyze the encoding of symbolic states across different layers of OpenVLA's Llama backbone. Our probing results show consistently high accuracies (> 0.90) for both object and action states across most layers, though contrary to our hypotheses, we did not observe the expected pattern of object states being encoded earlier than action states. We demonstrate an integrated DIARC-OpenVLA system that leverages these symbolic representations for real-time state monitoring, laying the foundation for more interpretable and reliable robotic manipulation.


NovelGym: A Flexible Ecosystem for Hybrid Planning and Learning Agents Designed for Open Worlds

arXiv.org Artificial Intelligence

As AI agents leave the lab and venture into the real world as autonomous vehicles, delivery robots, and cooking robots, it is increasingly necessary to design and comprehensively evaluate algorithms that tackle the ``open-world''. To this end, we introduce NovelGym, a flexible and adaptable ecosystem designed to simulate gridworld environments, serving as a robust platform for benchmarking reinforcement learning (RL) and hybrid planning and learning agents in open-world contexts. The modular architecture of NovelGym facilitates rapid creation and modification of task environments, including multi-agent scenarios, with multiple environment transformations, thus providing a dynamic testbed for researchers to develop open-world AI agents.


A principled approach to model validation in domain generalization

arXiv.org Artificial Intelligence

Domain generalization aims to learn a model with good generalization ability, that is, the learned model should not only perform well on several seen domains but also on unseen domains with different data distributions. State-of-the-art domain generalization methods typically train a representation function followed by a classifier jointly to minimize both the classification risk and the domain discrepancy. However, when it comes to model selection, most of these methods rely on traditional validation routines that select models solely based on the lowest classification risk on the validation set. In this paper, we theoretically demonstrate a trade-off between minimizing classification risk and mitigating domain discrepancy, i.e., it is impossible to achieve the minimum of these two objectives simultaneously. Motivated by this theoretical result, we propose a novel model selection method suggesting that the validation process should account for both the classification risk and the domain discrepancy. We validate the effectiveness of the proposed method by numerical results on several domain generalization datasets.


NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds

arXiv.org Artificial Intelligence

In order for artificial agents to successfully perform tasks in changing environments, they must be able to both detect and adapt to novelty. However, visual novelty detection research often only evaluates on repurposed datasets such as CIFAR-10 originally intended for object classification, where images focus on one distinct, well-centered object. New benchmarks are needed to represent the challenges of navigating the complex scenes of an open world. Our new NovelCraft dataset contains multimodal episodic data of the images and symbolic world-states seen by an agent completing a pogo stick assembly task within a modified Minecraft environment. In some episodes, we insert novel objects of varying size within the complex 3D scene that may impact gameplay. Our visual novelty detection benchmark finds that methods that rank best on popular area-under-the-curve metrics may be outperformed by simpler alternatives when controlling false positives matters most. Further multimodal novelty detection experiments suggest that methods that fuse both visual and symbolic information can improve time until detection as well as overall discrimination. Finally, our evaluation of recent generalized category discovery methods suggests that adapting to new imbalanced categories in complex scenes remains an exciting open problem.


Methods and Mechanisms for Interactive Novelty Handling in Adversarial Environments

arXiv.org Artificial Intelligence

Examples of such domains are "perfect information Learning to detect, characterize and accommodate novelties is a games" such as Chess, Go, or Ms.Pac-man, where the rules challenge that agents operating in open-world domains need to of the game, the goals of the players, and the entire state of the address to be able to guarantee satisfactory task performance. Certain game are always known by all agents [10, 24, 30]. This characteristic novelties (e.g., changes in environment dynamics) can interfere simplifies the game AI behavior by limiting the number of novelties with the performance or prevent agents from accomplishing task to instances of known types (e.g., a chess move with the bishop goals altogether. In this paper, we introduce general methods and a player has not seen before), thus allowing the development of architectural mechanisms for detecting and characterizing different the game AI without needing to anticipate any unknown scenarios types of novelties, and for building an appropriate adaptive within the bounds of the system (e.g., a novel piece with novel rules model to accommodate them utilizing logical representations and being introduced).


Conditional entropy minimization principle for learning domain invariant representation features

arXiv.org Artificial Intelligence

Invariance principle-based methods, for example, Invariant Risk Minimization (IRM), have recently emerged as promising approaches for Domain Generalization (DG). Despite the promising theory, invariance principle-based approaches fail in common classification tasks due to the mixture of the true invariant features and the spurious invariant features. In this paper, we propose a framework based on the conditional entropy minimization principle to filter out the spurious invariant features leading to a new algorithm with a better generalization capability. We theoretically prove that under some particular assumptions, the representation function can precisely recover the true invariant features. In addition, we also show that the proposed approach is closely related to the well-known Information Bottleneck framework. Both the theoretical and numerical results are provided to justify our approach.


Barycenteric distribution alignment and manifold-restricted invertibility for domain generalization

arXiv.org Machine Learning

For the Domain Generalization (DG) problem where the hypotheses are composed of a common representation function followed by a labeling function, we point out a shortcoming in existing approaches that fail to explicitly optimize for a term, appearing in a well-known and widely adopted upper bound to the risk on the unseen domain, that is dependent on the representation to be learned. To this end, we first derive a novel upper bound to the prediction risk. We show that imposing a mild assumption on the representation to be learned, namely manifold restricted invertibility, is sufficient to deal with this issue. Further, unlike existing approaches, our novel upper bound doesn't require the assumption of Lipschitzness of the loss function. In addition, the distributional discrepancy in the representation space is handled via the Wasserstein-2 barycenter cost. In this context, we creatively leverage old and recent transport inequalities, which link various optimal transport metrics, in particular the $L^1$ distance (also known as the total variation distance) and the Wasserstein-2 distances, with the Kullback-Liebler divergence. These analyses and insights motivate a new representation learning cost for DG that additively balances three competing objectives: 1) minimizing classification error across seen domains via cross-entropy, 2) enforcing domain-invariance in the representation space via the Wasserstein-2 barycenter cost, and 3) promoting non-degenerate, nearly-invertible representation via one of two mechanisms, viz., an autoencoder-based reconstruction loss or a mutual information loss. It is to be noted that the proposed algorithms completely bypass the use of any adversarial training mechanism that is typical of many current domain generalization approaches. Simulation results on several standard datasets demonstrate superior performance compared to several well-known DG algorithms.


Integrating Planning, Execution and Monitoring in the presence of Open World Novelties: Case Study of an Open World Monopoly Solver

arXiv.org Artificial Intelligence

The game of monopoly is an adversarial multi-agent domain where there is no fixed goal other than to be the last player solvent, There are useful subgoals like monopolizing sets of properties, and developing them. There is also a lot of randomness from dice rolls, card-draws, and adversaries' strategies. This unpredictability is made worse when unknown novelties are added during gameplay. Given these challenges, Monopoly was one of the test beds chosen for the DARPA-SAILON program which aims to create agents that can detect and accommodate novelties. To handle the game complexities, we developed an agent that eschews complete plans, and adapts it's policy online as the game evolves. In the most recent independent evaluation in the SAILON program, our agent was the best performing agent on most measures. We herein present our approach and results.