Goto

Collaborating Authors

 Scharpff, Joris


Solving Transition-Independent Multi-Agent MDPs with Sparse Interactions

AAAI Conferences

In cooperative multi-agent sequential decision making under uncertainty, agents must coordinate to find an optimal joint policy that maximises joint value. Typical algorithms exploit additive structure in the value function, but in the fully-observable multi-agent MDP (MMDP) setting such structure is not present. We propose a new optimal solver for transition-independent MMDPs, in which agents can only affect their own state but their reward depends on joint transitions. We represent these dependencies compactly in conditional return graphs (CRGs). Using CRGs the value of a joint policy and the bounds on partially specified joint policies can be efficiently computed. We propose CoRe, a novel branch-and-bound policy search algorithm building on CRGs. CoRe typically requires less runtime than available alternatives and finds solutions to previously unsolvable problems.


Bounded Approximations for Linear Multi-Objective Planning Under Uncertainty

AAAI Conferences

Planning under uncertainty poses a complex problem in which multiple objectives often need to be balanced. When dealing with multiple objectives, it is often assumed that the relative importance of the objectives is known a priori. However, in practice human decision makers often find it hard to specify such preferences, and would prefer a decision support system that presents a range of possible alternatives. We propose two algorithms for computing these alternatives for the case of linearly weighted objectives. First, we propose an anytime method, approximate optimistic linear support (AOLS), that incrementally builds up a complete set of ε-optimal plans, exploiting the piecewise linear and convex shape of the value function. Second, we propose an approximate anytime method, scalarised sample incremental improvement (SSII), that employs weight sampling to focus on the most interesting regions in weight space, as suggested by a prior over preferences. We show empirically that our methods are able to produce (near-)optimal alternative sets orders of magnitude faster than existing techniques.


Planning under Uncertainty for Coordinating Infrastructural Maintenance

AAAI Conferences

We address efficient planning of maintenance activities in infrastructural networks, inspired by the real-world problem of servicing a highway network. A road authority is responsible for the quality, throughput and maintenance costs of the network, while the actual maintenance is performed by autonomous, third-party contractors. From a (multi-agent) planning and scheduling perspective, many interesting challenges can be identified. First, planned maintenance activities might have an uncertain duration due to unexpected delays. Second, since maintenance activities influence the traffic flow in the network, careful coordination of the planned activities is required in order to minimise their impact on the network throughput. Third, as we are dealing with selfish agents in a private-values setting, the road authority faces an incentive-design problem to truthfully elicit agent costs, complicated by the fact that it needs to balance multiple objectives. The main contributions of this work are: 1) multi-agent coordination on a network level through a novel combination of planning under uncertainty and dynamic mechanism design, applied to real-world problems, 2) accurate modelling and solving of maintenance-planning problems and 3) empirical exploration of the complexities that arise in these problems. We introduce a formal model of the problem domain, present experimental insights and identify open challenges for both the planning and scheduling as well as the mechanism design communities.