Goto

Collaborating Authors

 Scanagatta, Mauro


Entropy-based Pruning for Learning Bayesian Networks using BIC

arXiv.org Machine Learning

For decomposable score-based structure learning of Bayesian networks, existing approaches first compute a collection of candidate parent sets for each variable and then optimize over this collection by choosing one parent set for each variable without creating directed cycles while maximizing the total score. We target the task of constructing the collection of candidate parent sets when the score of choice is the Bayesian Information Criterion (BIC). We provide new non-trivial results that can be used to prune the search space of candidate parent sets of each node. We analyze how these new results relate to previous ideas in the literature both theoretically and empirically. We show in experiments with UCI data sets that gains can be significant. Since the new pruning rules are easy to implement and have low computational costs, they can be promptly integrated into all state-of-the-art methods for structure learning of Bayesian networks.


Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables

Neural Information Processing Systems

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.


Learning Bayesian Networks with Thousands of Variables

Neural Information Processing Systems

We present a method for learning Bayesian networks from data sets containing thousands of variables without the need for structure constraints. Our approach is made of two parts. The first is a novel algorithm that effectively explores the space of possible parent sets of a node. It guides the exploration towards the most promising parent sets on the basis of an approximated score function that is computed in constant time. The second part is an improvement of an existing ordering-based algorithm for structure optimization. The new algorithm provably achieves a higher score compared to its original formulation. Our novel approach consistently outperforms the state of the art on very large data sets.