Goto

Collaborating Authors

 Saxe, Joshua


CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks. We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities. We introduce two new areas for testing: prompt injection and code interpreter abuse. We evaluated multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama. Our results show that conditioning away risk of attack remains an unsolved problem; for example, all tested models showed between 26% and 41% successful prompt injection tests. We further introduce the safety-utility tradeoff: conditioning an LLM to reject unsafe prompts can cause the LLM to falsely reject answering benign prompts, which lowers utility. We propose quantifying this tradeoff using False Refusal Rate (FRR). As an illustration, we introduce a novel test set to quantify FRR for cyberattack helpfulness risk. We find many LLMs able to successfully comply with "borderline" benign requests while still rejecting most unsafe requests. Finally, we quantify the utility of LLMs for automating a core cybersecurity task, that of exploiting software vulnerabilities. This is important because the offensive capabilities of LLMs are of intense interest; we quantify this by creating novel test sets for four representative problems. We find that models with coding capabilities perform better than those without, but that further work is needed for LLMs to become proficient at exploit generation. Our code is open source and can be used to evaluate other LLMs.


Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models

arXiv.org Artificial Intelligence

This paper presents CyberSecEval, a comprehensive benchmark developed to help bolster the cybersecurity of Large Language Models (LLMs) employed as coding assistants. As what we believe to be the most extensive unified cybersecurity safety benchmark to date, CyberSecEval provides a thorough evaluation of LLMs in two crucial security domains: their propensity to generate insecure code and their level of compliance when asked to assist in cyberattacks. Through a case study involving seven models from the Llama 2, Code Llama, and OpenAI GPT large language model families, CyberSecEval effectively pinpointed key cybersecurity risks. More importantly, it offered practical insights for refining these models. A significant observation from the study was the tendency of more advanced models to suggest insecure code, highlighting the critical need for integrating security considerations in the development of sophisticated LLMs. CyberSecEval, with its automated test case generation and evaluation pipeline covers a broad scope and equips LLM designers and researchers with a tool to broadly measure and enhance the cybersecurity safety properties of LLMs, contributing to the development of more secure AI systems.


A Language-Agnostic Model for Semantic Source Code Labeling

arXiv.org Machine Learning

Code search and comprehension have become more difficult in recent years due to the rapid expansion of available source code. Current tools lack a way to label arbitrary code at scale while maintaining up-to-date representations of new programming languages, libraries, and functionalities. Comprehensive labeling of source code enables users to search for documents of interest and obtain a high-level understanding of their contents. We use Stack Overflow code snippets and their tags to train a language-agnostic, deep convolutional neural network to automatically predict semantic labels for source code documents. On Stack Overflow code snippets, we demonstrate a mean area under ROC of 0.957 over a long-tailed list of 4,508 tags. We also manually validate the model outputs on a diverse set of unlabeled source code documents retrieved from Github, and we obtain a top-1 accuracy of 86.6%. This strongly indicates that the model successfully transfers its knowledge from Stack Overflow snippets to arbitrary source code documents.


A Deep Learning Approach to Fast, Format-Agnostic Detection of Malicious Web Content

arXiv.org Machine Learning

Malicious web content is a serious problem on the Internet today. In this paper we propose a deep learning approach to detecting malevolent web pages. While past work on web content detection has relied on syntactic parsing or on emulation of HTML and Javascript to extract features, our approach operates directly on a language-agnostic stream of tokens extracted directly from static HTML files with a simple regular expression. This makes it fast enough to operate in high-frequency data contexts like firewalls and web proxies, and allows it to avoid the attack surface exposure of complex parsing and emulation code. Unlike well-known approaches such as bag-of-words models, which ignore spatial information, our neural network examines content at hierarchical spatial scales, allowing our model to capture locality and yielding superior accuracy compared to bag-of-words baselines. Our proposed architecture achieves a 97.5% detection rate at a 0.1% false positive rate, and classifies small-batched web pages at a rate of over 100 per second on commodity hardware. The speed and accuracy of our approach makes it appropriate for deployment to endpoints, firewalls, and web proxies.