Sawlani, Saurabh
Fast Attributed Graph Embedding via Density of States
Sawlani, Saurabh, Zhao, Lingxiao, Akoglu, Leman
Given a node-attributed graph, how can we efficiently represent it with few numerical features that expressively reflect its topology and attribute information? We propose A-DOGE, for Attributed DOS-based Graph Embedding, based on density of states (DOS, a.k.a. spectral density) to tackle this problem. A-DOGE is designed to fulfill a long desiderata of desirable characteristics. Most notably, it capitalizes on efficient approximation algorithms for DOS, that we extend to blend in node labels and attributes for the first time, making it fast and scalable for large attributed graphs and graph databases. Being based on the entire eigenspectrum of a graph, A-DOGE can capture structural and attribute properties at multiple ("glocal") scales. Moreover, it is unsupervised (i.e. agnostic to any specific objective) and lends itself to various interpretations, which makes it is suitable for exploratory graph mining tasks. Finally, it processes each graph independent of others, making it amenable for streaming settings as well as parallelization. Through extensive experiments, we show the efficacy and efficiency of A-DOGE on exploratory graph analysis and graph classification tasks, where it significantly outperforms unsupervised baselines and achieves competitive performance with modern supervised GNNs, while achieving the best trade-off between accuracy and runtime.
Faster width-dependent algorithm for mixed packing and covering LPs
Boob, Digvijay, Sawlani, Saurabh, Wang, Di
In this paper, we give a faster width-dependent algorithm for mixed packing-covering LPs. Mixed packing-covering LPs are fundamental to combinatorial optimization in computer science and operations research. Our algorithm finds a $1 \eps$ approximate solution in time $O(Nw/ \varepsilon)$, where $N$ is number of nonzero entries in the constraint matrix, and $w$ is the maximum number of nonzeros in any constraint. This algorithm is faster than Nesterov's smoothing algorithm which requires $O(N\sqrt{n}w/ \eps)$ time, where $n$ is the dimension of the problem. Our work utilizes the framework of area convexity introduced in [Sherman-FOCS'17] to obtain the best dependence on $\varepsilon$ while breaking the infamous $\ell_{\infty}$ barrier to eliminate the factor of $\sqrt{n}$.