Sawarni, Ayush
Generalized Linear Bandits with Limited Adaptivity
Sawarni, Ayush, Das, Nirjhar, Barman, Siddharth, Sinha, Gaurav
We study the generalized linear contextual bandit problem within the constraints of limited adaptivity. In this paper, we present two algorithms, $\texttt{B-GLinCB}$ and $\texttt{RS-GLinCB}$, that address, respectively, two prevalent limited adaptivity settings. Given a budget $M$ on the number of policy updates, in the first setting, the algorithm needs to decide upfront $M$ rounds at which it will update its policy, while in the second setting it can adaptively perform $M$ policy updates during its course. For the first setting, we design an algorithm $\texttt{B-GLinCB}$, that incurs $\tilde{O}(\sqrt{T})$ regret when $M = \Omega\left( \log{\log T} \right)$ and the arm feature vectors are generated stochastically. For the second setting, we design an algorithm $\texttt{RS-GLinCB}$ that updates its policy $\tilde{O}(\log^2 T)$ times and achieves a regret of $\tilde{O}(\sqrt{T})$ even when the arm feature vectors are adversarially generated. Notably, in these bounds, we manage to eliminate the dependence on a key instance dependent parameter $\kappa$, that captures non-linearity of the underlying reward model. Our novel approach for removing this dependence for generalized linear contextual bandits might be of independent interest.
Nash Regret Guarantees for Linear Bandits
Sawarni, Ayush, Pal, Soumybrata, Barman, Siddharth
We obtain essentially tight upper bounds for a strengthened notion of regret in the stochastic linear bandits framework. The strengthening -- referred to as Nash regret -- is defined as the difference between the (a priori unknown) optimum and the geometric mean of expected rewards accumulated by the linear bandit algorithm. Since the geometric mean corresponds to the well-studied Nash social welfare (NSW) function, this formulation quantifies the performance of a bandit algorithm as the collective welfare it generates across rounds. NSW is known to satisfy fairness axioms and, hence, an upper bound on Nash regret provides a principled fairness guarantee. We consider the stochastic linear bandits problem over a horizon of $T$ rounds and with set of arms ${X}$ in ambient dimension $d$. Furthermore, we focus on settings in which the stochastic reward -- associated with each arm in ${X}$ -- is a non-negative, $\nu$-sub-Poisson random variable. For this setting, we develop an algorithm that achieves a Nash regret of $O\left( \sqrt{\frac{d\nu}{T}} \log( T |X|)\right)$. In addition, addressing linear bandit instances in which the set of arms ${X}$ is not necessarily finite, we obtain a Nash regret upper bound of $O\left( \frac{d^\frac{5}{4}\nu^{\frac{1}{2}}}{\sqrt{T}} \log(T)\right)$. Since bounded random variables are sub-Poisson, these results hold for bounded, positive rewards. Our linear bandit algorithm is built upon the successive elimination method with novel technical insights, including tailored concentration bounds and the use of sampling via John ellipsoid in conjunction with the Kiefer-Wolfowitz optimal design.
Learning Good Interventions in Causal Graphs via Covering
Sawarni, Ayush, Madhavan, Rahul, Sinha, Gaurav, Barman, Siddharth
We study the causal bandit problem that entails identifying a near-optimal intervention from a specified set $A$ of (possibly non-atomic) interventions over a given causal graph. Here, an optimal intervention in ${A}$ is one that maximizes the expected value for a designated reward variable in the graph, and we use the standard notion of simple regret to quantify near optimality. Considering Bernoulli random variables and for causal graphs on $N$ vertices with constant in-degree, prior work has achieved a worst case guarantee of $\widetilde{O} (N/\sqrt{T})$ for simple regret. The current work utilizes the idea of covering interventions (which are not necessarily contained within ${A}$) and establishes a simple regret guarantee of $\widetilde{O}(\sqrt{N/T})$. Notably, and in contrast to prior work, our simple regret bound depends only on explicit parameters of the problem instance. We also go beyond prior work and achieve a simple regret guarantee for causal graphs with unobserved variables. Further, we perform experiments to show improvements over baselines in this setting.