Sawade, Christoph
Transfer Learning by Distribution Matching for Targeted Advertising
Bickel, Steffen, Sawade, Christoph, Scheffer, Tobias
We address the problem of learning classifiers for several related tasks that may differ in their joint distribution of input and output variables. For each task, small - possibly even empty - labeled samples and large unlabeled samples are available. While the unlabeled samples reflect the target distribution, the labeled samples may be biased. We derive a solution that produces resampling weights which match the pool of all examples to the target distribution of any given task. Our work is motivated by the problem of predicting sociodemographic features for users of web portals, based on the content which they have accessed.
Varying-coefficient models with isotropic Gaussian process priors
Bussas, Matthias, Sawade, Christoph, Scheffer, Tobias, Landwehr, Niels
We study learning problems in which the conditional distribution of the output given the input varies as a function of additional task variables. In varying-coefficient models with Gaussian process priors, a Gaussian process generates the functional relationship between the task variables and the parameters of this conditional. Varying-coefficient models subsume hierarchical Bayesian multitask models, but also generalizations in which the conditional varies continuously, for instance, in time or space. However, Bayesian inference in varying-coefficient models is generally intractable. We show that inference for varying-coefficient models with isotropic Gaussian process priors resolves to standard inference for a Gaussian process that can be solved efficiently. MAP inference in this model resolves to multitask learning using task and instance kernels, and inference for hierarchical Bayesian multitask models can be carried out efficiently using graph-Laplacian kernels. We report on experiments for geospatial prediction.
Active Comparison of Prediction Models
Sawade, Christoph, Landwehr, Niels, Scheffer, Tobias
We address the problem of comparing the risks of two given predictive models - for instance, a baseline model and a challenger - as confidently as possible on a fixed labeling budget. This problem occurs whenever models cannot be compared on held-out training data, possibly because the training data are unavailable or do not reflect the desired test distribution. In this case, new test instances have to be drawn and labeled at a cost. We devise an active comparison method that selects instances according to an instrumental sampling distribution. We derive the sampling distribution that maximizes the power of a statistical test applied to the observed empirical risks, and thereby minimizes the likelihood of choosing the inferior model. Empirically, we investigate model selection problems on several classification and regression tasks and study the accuracy of the resulting p-values.
Learning to Identify Regular Expressions that Describe Email Campaigns
Prasse, Paul, Sawade, Christoph, Landwehr, Niels, Scheffer, Tobias
This paper addresses the problem of inferring a regular expression from a given set of strings that resembles, as closely as possible, the regular expression that a human expert would have written to identify the language. This is motivated by our goal of automating the task of postmasters of an email service who use regular expressions to describe and blacklist email spam campaigns. Training data contains batches of messages and corresponding regular expressions that an expert postmaster feels confident to blacklist. We model this task as a learning problem with structured output spaces and an appropriate loss function, derive a decoder and the resulting optimization problem, and a report on a case study conducted with an email service.
Active Estimation of F-Measures
Sawade, Christoph, Landwehr, Niels, Scheffer, Tobias
We address the problem of estimating the F-measure of a given model as accurately as possible on a fixed labeling budget. This problem occurs whenever an estimate cannot be obtained from held-out training data; for instance, when data that have been used to train the model are held back for reasons of privacy or do not reflect the test distribution. In this case, new test instances have to be drawn and labeled at a cost. An active estimation procedure selects instances according to an instrumental sampling distribution. An analysis of the sources of estimation error leads to an optimal sampling distribution that minimizes estimator variance. We explore conditions under which active estimates of F-measures are more accurate than estimates based on instances sampled from the test distribution.
Transfer Learning by Distribution Matching for Targeted Advertising
Bickel, Steffen, Sawade, Christoph, Scheffer, Tobias
We address the problem of learning classifiers for several related tasks that may differ in their joint distribution of input and output variables. For each task, small - possibly even empty - labeled samples and large unlabeled samples are available. While the unlabeled samples reflect the target distribution, the labeled samples may be biased. We derive a solution that produces resampling weights which match the pool of all examples to the target distribution of any given task. Our work is motivated by the problem of predicting sociodemographic features for users of web portals, based on the content which they have accessed. Here, questionnaires offered to a small portion of each portal's users produce biased samples. Transfer learning enables us to make predictions even for new portals with few or no training data and improves the overall prediction accuracy.