Saverio Salzo
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto
We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto
We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.
Bilevel learning of the Group Lasso structure
Jordan Frecon, Saverio Salzo, Massimiliano Pontil
Regression with group-sparsity penalty plays a central role in high-dimensional prediction problems. However, most existing methods require the group structure to be known a priori. In practice, this may be a too strong assumption, potentially hampering the effectiveness of the regularization method. To circumvent this issue, we present a method to estimate the group structure by means of a continuous bilevel optimization problem where the data is split into training and validation sets. Our approach relies on an approximation scheme where the lower level problem is replaced by a smooth dual forward-backward algorithm with Bregman distances. We provide guarantees regarding the convergence of the approximate procedure to the exact problem and demonstrate the well behaviour of the proposed method on synthetic experiments. Finally, a preliminary application to genes expression data is tackled with the purpose of unveiling functional groups.