Satinder Singh
Value Prediction Network
Junhyuk Oh, Satinder Singh, Honglak Lee
On Learning Intrinsic Rewards for Policy Gradient Methods
Zeyu Zheng, Junhyuk Oh, Satinder Singh
In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et al. [2010] that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. We also compare our method with using a constant "live bonus" and with using a count-based exploration bonus (i.e., pixel-SimHash). Our results show improved performance on most but not all of the domains.
Completing State Representations using Spectral Learning
Nan Jiang, Alex Kulesza, Satinder Singh
A central problem in dynamical system modeling is state discovery--that is, finding a compact summary of the past that captures the information needed to predict the future. Predictive State Representations (PSRs) enable clever spectral methods for state discovery; however, while consistent in the limit of infinite data, these methods often suffer from poor performance in the low data regime. In this paper we develop a novel algorithm for incorporating domain knowledge, in the form of an imperfect state representation, as side information to speed spectral learning for PSRs. We prove theoretical results characterizing the relevance of a user-provided state representation, and design spectral algorithms that can take advantage of a relevant representation. Our algorithm utilizes principal angles to extract the relevant components of the representation, and is robust to misspecification. Empirical evaluation on synthetic HMMs, an aircraft identification domain, and a gene splice dataset shows that, even with weak domain knowledge, the algorithm can significantly outperform standard PSR learning.
No-Press Diplomacy: Modeling Multi-Agent Gameplay
Philip Paquette, Yuchen Lu, SETON STEVEN BOCCO, Max Smith, Satya O.-G., Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, Aaron C. Courville
Diplomacy is a seven-player non-stochastic, non-cooperative game, where agents acquire resources through a mix of teamwork and betrayal. Reliance on trust and coordination makes Diplomacy the first non-cooperative multi-agent benchmark for complex sequential social dilemmas in a rich environment. In this work, we focus on training an agent that learns to play the No Press version of Diplomacy where there is no dedicated communication channel between players.
On Learning Intrinsic Rewards for Policy Gradient Methods
Zeyu Zheng, Junhyuk Oh, Satinder Singh
In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et al. [2010] that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. We also compare our method with using a constant "live bonus" and with using a count-based exploration bonus (i.e., pixel-SimHash). Our results show improved performance on most but not all of the domains.
Completing State Representations using Spectral Learning
Nan Jiang, Alex Kulesza, Satinder Singh
A central problem in dynamical system modeling is state discovery--that is, finding a compact summary of the past that captures the information needed to predict the future. Predictive State Representations (PSRs) enable clever spectral methods for state discovery; however, while consistent in the limit of infinite data, these methods often suffer from poor performance in the low data regime. In this paper we develop a novel algorithm for incorporating domain knowledge, in the form of an imperfect state representation, as side information to speed spectral learning for PSRs. We prove theoretical results characterizing the relevance of a user-provided state representation, and design spectral algorithms that can take advantage of a relevant representation. Our algorithm utilizes principal angles to extract the relevant components of the representation, and is robust to misspecification. Empirical evaluation on synthetic HMMs, an aircraft identification domain, and a gene splice dataset shows that, even with weak domain knowledge, the algorithm can significantly outperform standard PSR learning.
Discovery of Useful Questions as Auxiliary Tasks
Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk Oh, Hado P. van Hasselt, David Silver, Satinder Singh
Arguably, intelligent agents ought to be able to discover their own questions so that in learning answers for them they learn unanticipated useful knowledge and skills; this departs from the focus in much of machine learning on agents learning answers to externally defined questions. We present a novel method for a reinforcement learning (RL) agent to discover questions formulated as general value functions or GVFs, a fairly rich form of knowledge representation. Specifically, our method uses non-myopic meta-gradients to learn GVF-questions such that learning answers to them, as an auxiliary task, induces useful representations for the main task faced by the RL agent. We demonstrate that auxiliary tasks based on the discovered GVFs are sufficient, on their own, to build representations that support main task learning, and that they do so better than popular hand-designed auxiliary tasks from the literature. Furthermore, we show, in the context of Atari 2600 videogames, how such auxiliary tasks, meta-learned alongside the main task, can improve the data efficiency of an actor-critic agent.
No-Press Diplomacy: Modeling Multi-Agent Gameplay
Philip Paquette, Yuchen Lu, SETON STEVEN BOCCO, Max Smith, Satya O.-G., Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, Aaron C. Courville
Diplomacy is a seven-player non-stochastic, non-cooperative game, where agents acquire resources through a mix of teamwork and betrayal. Reliance on trust and coordination makes Diplomacy the first non-cooperative multi-agent benchmark for complex sequential social dilemmas in a rich environment. In this work, we focus on training an agent that learns to play the No Press version of Diplomacy where there is no dedicated communication channel between players.
Discovery of Useful Questions as Auxiliary Tasks
Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk Oh, Hado P. van Hasselt, David Silver, Satinder Singh
Arguably, intelligent agents ought to be able to discover their own questions so that in learning answers for them they learn unanticipated useful knowledge and skills; this departs from the focus in much of machine learning on agents learning answers to externally defined questions. We present a novel method for a reinforcement learning (RL) agent to discover questions formulated as general value functions or GVFs, a fairly rich form of knowledge representation. Specifically, our method uses non-myopic meta-gradients to learn GVF-questions such that learning answers to them, as an auxiliary task, induces useful representations for the main task faced by the RL agent. We demonstrate that auxiliary tasks based on the discovered GVFs are sufficient, on their own, to build representations that support main task learning, and that they do so better than popular hand-designed auxiliary tasks from the literature. Furthermore, we show, in the context of Atari 2600 videogames, how such auxiliary tasks, meta-learned alongside the main task, can improve the data efficiency of an actor-critic agent.
Value Prediction Network
Junhyuk Oh, Satinder Singh, Honglak Lee