Sarkar, Ram
A Dual Attention-aided DenseNet-121 for Classification of Glaucoma from Fundus Images
Chakraborty, Soham, Roy, Ayush, Pramanik, Payel, Valenkova, Daria, Sarkar, Ram
Deep learning and computer vision methods are nowadays predominantly used in the field of ophthalmology. In this paper, we present an attention-aided DenseNet-121 for classifying normal and glaucomatous eyes from fundus images. It involves the convolutional block attention module to highlight relevant spatial and channel features extracted by DenseNet-121. The channel recalibration module further enriches the features by utilizing edge information along with the statistical features of the spatial dimension. For the experiments, two standard datasets, namely RIM-ONE and ACRIMA, have been used. Our method has shown superior results than state-of-the-art models. An ablation study has also been conducted to show the effectiveness of each of the components. The code of the proposed work is available at: https://github.com/Soham2004GitHub/DADGC.
FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays
Roy, Ayush, Bhattacharjee, Anurag, Oliva, Diego, Ramos-Soto, Oscar, Alvarez-Padilla, Francisco J., Sarkar, Ram
Pneumonia is a respiratory infection caused by bacteria, fungi, or viruses. It affects many people, particularly those in developing or underdeveloped nations with high pollution levels, unhygienic living conditions, overcrowding, and insufficient medical infrastructure. Pneumonia can cause pleural effusion, where fluids fill the lungs, leading to respiratory difficulty. Early diagnosis is crucial to ensure effective treatment and increase survival rates. Chest X-ray imaging is the most commonly used method for diagnosing pneumonia. However, visual examination of chest X-rays can be difficult and subjective. In this study, we have developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images. We have used DenseNet-121 and ResNet50 as the backbone for the binary class (pneumonia and normal) and multi-class (bacterial pneumonia, viral pneumonia, and normal) classification tasks, respectively. We have also implemented a channel-specific spatial attention mechanism, called Fuzzy Channel Selective Spatial Attention Module (FCSSAM), to highlight the specific spatial regions of relevant channels while removing the irrelevant channels of the extracted features by the backbone. We evaluated the proposed approach on a publicly available chest X-ray dataset, using binary and multi-class classification setups. Our proposed method achieves accuracy rates of 97.15\% and 79.79\% for the binary and multi-class classification setups, respectively. The results of our proposed method are superior to state-of-the-art (SOTA) methods. The code of the proposed model will be available at: https://github.com/AyushRoy2001/FA-Net.
A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion
Roy, Ayush, Sarkar, Sujan, Ghosal, Sohom, Kaplun, Dmitrii, Lyanova, Asya, Sarkar, Ram
Dermoscopy requires a welltrained physician with experience and visual ability, while Skin cancer is a highly dangerous type of cancer that requires skin biopsy involves taking a sample of skin from the patient's an accurate diagnosis from experienced physicians. To help body, which can be a slow and painful process. These difficulties physicians diagnose skin cancer more efficiently, a computeraided have spurred researchers in the field of artificial intelligence diagnosis (CAD) system can be very helpful. In this (AI) to create Computer-Aided Diagnosis (CAD) systems paper, we propose a novel model, which uses a novel attention capable of precise skin cancer classification. However, mechanism to pinpoint the differences in features across due to the inter-class similarity and intra-class dissimilarity the spatial dimensions and symmetry of the lesion, thereby focusing among different types of skin cancer, classifying skin cancer on the dissimilarities of various classes based on symmetry, using medical image processing is a challenging issue.
GRU-Net for breast histopathology image segmentation
Roy, Ayush, Pramanik, Payel, Ghosal, Sohom, Valenkova, Daria, Kaplun, Dmitrii, Sarkar, Ram
Breast cancer is a major global health concern. Pathologists face challenges in analyzing complex features from pathological images, which is a time-consuming and labor-intensive task. Therefore, efficient computer-based diagnostic tools are needed for early detection and treatment planning. This paper presents a modified version of MultiResU-Net for histopathology image segmentation, which is selected as the backbone for its ability to analyze and segment complex features at multiple scales and ensure effective feature flow via skip connections. The modified version also utilizes the Gaussian distribution-based Attention Module (GdAM) to incorporate histopathology-relevant text information in a Gaussian distribution. The sampled features from the Gaussian text feature-guided distribution highlight specific spatial regions based on prior knowledge. Finally, using the Controlled Dense Residual Block (CDRB) on skip connections of MultiResU-Net, the information is transferred from the encoder layers to the decoder layers in a controlled manner using a scaling parameter derived from the extracted spatial features. We validate our approach on two diverse breast cancer histopathology image datasets: TNBC and MonuSeg, demonstrating superior segmentation performance compared to state-of-the-art methods. The code for our proposed model is available on GitHub.
AWGUNET: Attention-Aided Wavelet Guided U-Net for Nuclei Segmentation in Histopathology Images
Roy, Ayush, Pramanik, Payel, Kaplun, Dmitrii, Antonov, Sergei, Sarkar, Ram
Accurate nuclei segmentation in histopathological images is crucial for cancer diagnosis. Automating this process offers valuable support to clinical experts, as manual annotation is time-consuming and prone to human errors. However, automating nuclei segmentation presents challenges due to uncertain cell boundaries, intricate staining, and diverse structures. In this paper, we present a segmentation approach that combines the U-Net architecture with a DenseNet-121 backbone, harnessing the strengths of both to capture comprehensive contextual and spatial information. Our model introduces the Wavelet-guided channel attention module to enhance cell boundary delineation, along with a learnable weighted global attention module for channel-specific attention. The decoder module, composed of an upsample block and convolution block, further refines segmentation in handling staining patterns. The experimental results conducted on two publicly accessible histopathology datasets, namely Monuseg and TNBC, underscore the superiority of our proposed model, demonstrating its potential to advance histopathological image analysis and cancer diagnosis. The code is made available at: https://github.com/AyushRoy2001/AWGUNET.
Segmentation of Brain MRI using an Altruistic Harris Hawks' Optimization algorithm
Bandyopadhyay, Rajarshi, Kundu, Rohit, Oliva, Diego, Sarkar, Ram
Segmentation is an essential requirement in medicine when digital images are used in illness diagnosis, especially, in posterior tasks as analysis and disease identification. An efficient segmentation of brain Magnetic Resonance Images (MRIs) is of prime concern to radiologists due to their poor illumination and other conditions related to de acquisition of the images. Thresholding is a popular method for segmentation that uses the histogram of an image to label different homogeneous groups of pixels into different classes. However, the computational cost increases exponentially according to the number of thresholds. In this paper, we perform the multi-level thresholding using an evolutionary metaheuristic. It is an improved version of the Harris Hawks Optimization (HHO) algorithm that combines the chaotic initialization and the concept of altruism. Further, for fitness assignment, we use a hybrid objective function where along with the cross-entropy minimization, we apply a new entropy function, and leverage weights to the two objective functions to form a new hybrid approach. The HHO was originally designed to solve numerical optimization problems. Earlier, the statistical results and comparisons have demonstrated that the HHO provides very promising results compared with well-established metaheuristic techniques. In this article, the altruism has been incorporated into the HHO algorithm to enhance its exploitation capabilities. We evaluate the proposed method over 10 benchmark images from the WBA database of the Harvard Medical School and 8 benchmark images from the Brainweb dataset using some standard evaluation metrics.
Fuzzy Mutation Embedded Hybrids of Gravitational Search and Particle Swarm Optimization Methods for Engineering Design Problems
Kar, Devroop, Ghosh, Manosij, Guha, Ritam, Sarkar, Ram, Garcรญa-Hernรกndez, Laura, Abraham, Ajith
Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) are nature-inspired, swarm-based optimization algorithms respectively. Though they have been widely used for single-objective optimization since their inception, they suffer from premature convergence. Even though the hybrids of GSA and PSO perform much better, the problem remains. Hence, to solve this issue we have proposed a fuzzy mutation model for two hybrid versions of PSO and GSA - Gravitational Particle Swarm (GPS) and PSOGSA. The developed algorithms are called Mutation based GPS (MGPS) and Mutation based PSOGSA (MPSOGSA). The mutation operator is based on a fuzzy model where the probability of mutation has been calculated based on the closeness of particle to population centroid and improvement in the particle value. We have evaluated these two new algorithms on 23 benchmark functions of three categories (unimodal, multi-modal and multi-modal with fixed dimension). The experimental outcome shows that our proposed model outperforms their corresponding ancestors, MGPS outperforms GPS 13 out of 23 times (56.52%) and MPSOGSA outperforms PSOGSA 17 times out of 23 (73.91 %). We have also compared our results against those of recent optimization algorithms such as Sine Cosine Algorithm (SCA), Opposition-Based SCA, and Volleyball Premier League Algorithm (VPL). In addition, we have applied our proposed algorithms on some classic engineering design problems and the outcomes are satisfactory. The related codes of the proposed algorithms can be found in this link: Fuzzy-Mutation-Embedded-Hybrids-of-GSA-and-PSO.
Handwritten Bangla Alphabet Recognition using an MLP Based Classifier
Basu, Subhadip, Das, Nibaran, Sarkar, Ram, Kundu, Mahantapas, Nasipuri, Mita, Basu, Dipak Kumar
The work presented here involves the design of a Multi Layer Perceptron (MLP) based classifier for recognition of handwritten Bangla alphabet using a 76 element feature set Bangla is the second most popular script and language in the Indian subcontinent and the fifth most popular language in the world. The feature set developed for representing handwritten characters of Bangla alphabet includes 24 shadow features, 16 centroid features and 36 longest-run features. Recognition performances of the MLP designed to work with this feature set are experimentally observed as 86.46% and 75.05% on the samples of the training and the test sets respectively. The work has useful application in the development of a complete OCR system for handwritten Bangla text.
An MLP based Approach for Recognition of Handwritten `Bangla' Numerals
Basu, Subhadip, Das, Nibaran, Sarkar, Ram, Kundu, Mahantapas, Nasipuri, Mita, Basu, Dipak Kumar
The work presented here involves the design of a Multi Layer Perceptron (MLP) based pattern classifier for recognition of handwritten Bangla digits using a 76 element feature vector. Bangla is the second most popular script and language in the Indian subcontinent and the fifth most popular language in the world. The feature set developed for representing handwritten Bangla numerals here includes 24 shadow features, 16 centroid features and 36 longest-run features. On experimentation with a database of 6000 samples, the technique yields an average recognition rate of 96.67% evaluated after three-fold cross validation of results. It is useful for applications related to OCR of handwritten Bangla Digit and can also be extended to include OCR of handwritten characters of Bangla alphabet.