Sarkar, Anoop
Disambiguating Numeral Sequences to Decipher Ancient Accounting Corpora
Born, Logan, Monroe, M. Willis, Kelley, Kathryn, Sarkar, Anoop
A numeration system encodes abstract numeric quantities as concrete strings of written characters. The numeration systems used by modern scripts tend to be precise and unambiguous, but this was not so for the ancient and partially-deciphered proto-Elamite (PE) script, where written numerals can have up to four distinct readings depending on the system that is used to read them. We consider the task of disambiguating between these readings in order to determine the values of the numeric quantities recorded in this corpus. We algorithmically extract a list of possible readings for each PE numeral notation, and contribute two disambiguation techniques based on structural properties of the original documents and classifiers learned with the bootstrapping algorithm. We also contribute a test set for evaluating disambiguation techniques, as well as a novel approach to cautious rule selection for bootstrapped classifiers. Our analysis confirms existing intuitions about this script and reveals previously-unknown correlations between tablet content and numeral magnitude. This work is crucial to understanding and deciphering PE, as the corpus is heavily accounting-focused and contains many more numeric tokens than tokens of text.
Unified Examination of Entity Linking in Absence of Candidate Sets
Ong, Nicolas, Shavarani, Hassan, Sarkar, Anoop
Despite remarkable strides made in the development of entity linking systems in recent years, a comprehensive comparative analysis of these systems using a unified framework is notably absent. This paper addresses this oversight by introducing a new black-box benchmark and conducting a comprehensive evaluation of all state-of-the-art entity linking methods. We use an ablation study to investigate the impact of candidate sets on the performance of entity linking. Our findings uncover exactly how much such entity linking systems depend on candidate sets, and how much this limits the general applicability of each system. We present an alternative approach to candidate sets, demonstrating that leveraging the entire in-domain candidate set can serve as a viable substitute for certain models. We show the trade-off between less restrictive candidate sets, increased inference time and memory footprint for some models.
SpEL: Structured Prediction for Entity Linking
Shavarani, Hassan S., Sarkar, Anoop
Entity linking is a prominent thread of research focused on structured data creation by linking spans of text to an ontology or knowledge source. We revisit the use of structured prediction for entity linking which classifies each individual input token as an entity, and aggregates the token predictions. Our system, called SpEL (Structured prediction for Entity Linking) is a state-of-the-art entity linking system that uses some new ideas to apply structured prediction to the task of entity linking including: two refined fine-tuning steps; a context sensitive prediction aggregation strategy; reduction of the size of the model's output vocabulary, and; we address a common problem in entity-linking systems where there is a training vs. inference tokenization mismatch. Our experiments show that we can outperform the state-of-the-art on the commonly used AIDA benchmark dataset for entity linking to Wikipedia. Our method is also very compute efficient in terms of number of parameters and speed of inference.
Whatโs Hot in Human Language Technology: Highlights from NAACL HLT 2015
Chai, Joyce Y. (Michigan State University) | Sarkar, Anoop (Simon Fraser University) | Mihalcea, Rada (University of Michigan)
Several discriminative models with latent variables were also explored to learn better alignment models in a wetlab The Conference of the North American Chapter of the Association experiment domain (Naim et al. 2015). As alignment is for Computational Linguistics: Human Language often the first step in many problems involving language and Technology (NAACL HLT) is a premier conference reporting vision, these approaches and empirical results provide important outstanding research on human language technology.
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields
Schmidt, Mark, Babanezhad, Reza, Ahmed, Mohamed Osama, Defazio, Aaron, Clifton, Ann, Sarkar, Anoop
We apply stochastic average gradient (SAG) algorithms for training conditional random fields (CRFs). We describe a practical implementation that uses structure in the CRF gradient to reduce the memory requirement of this linearly-convergent stochastic gradient method, propose a non-uniform sampling scheme that substantially improves practical performance, and analyze the rate of convergence of the SAGA variant under non-uniform sampling. Our experimental results reveal that our method often significantly outperforms existing methods in terms of the training objective, and performs as well or better than optimally-tuned stochastic gradient methods in terms of test error.
Analysis of Semi-Supervised Learning with the Yarowsky Algorithm
Haffari, Gholam Reza, Sarkar, Anoop
The Yarowsky algorithm is a rule-based semi-supervised learning algorithm that has been successfully applied to some problems in computational linguistics. The algorithm was not mathematically well understood until (Abney 2004) which analyzed some specific variants of the algorithm, and also proposed some new algorithms for bootstrapping. In this paper, we extend Abney's work and show that some of his proposed algorithms actually optimize (an upper-bound on) an objective function based on a new definition of cross-entropy which is based on a particular instantiation of the Bregman distance between probability distributions. Moreover, we suggest some new algorithms for rule-based semi-supervised learning and show connections with harmonic functions and minimum multi-way cuts in graph-based semi-supervised learning.