Santosh, KC
LakotaBERT: A Transformer-based Model for Low Resource Lakota Language
Parankusham, Kanishka, Rizk, Rodrigue, Santosh, KC
Lakota, a critically endangered language of the Sioux people in North America, faces significant challenges due to declining fluency among younger generations. This paper introduces LakotaBERT, the first large language model (LLM) tailored for Lakota, aiming to support language revitalization efforts. Our research has two primary objectives: (1) to create a comprehensive Lakota language corpus and (2) to develop a customized LLM for Lakota. We compiled a diverse corpus of 105K sentences in Lakota, English, and parallel texts from various sources, such as books and websites, emphasizing the cultural significance and historical context of the Lakota language. Utilizing the RoBERTa architecture, we pre-trained our model and conducted comparative evaluations against established models such as RoBERTa, BERT, and multilingual BERT. Initial results demonstrate a masked language modeling accuracy of 51% with a single ground truth assumption, showcasing performance comparable to that of English-based models. We also evaluated the model using additional metrics, such as precision and F1 score, to provide a comprehensive assessment of its capabilities. By integrating AI and linguistic methodologies, we aspire to enhance linguistic diversity and cultural resilience, setting a valuable precedent for leveraging technology in the revitalization of other endangered indigenous languages.
Enabling clustering algorithms to detect clusters of varying densities through scale-invariant data preprocessing
Aryal, Sunil, Wells, Jonathan R., Baniya, Arbind Agrahari, Santosh, KC
In this paper, we show that preprocessing data using a variant of rank transformation called 'Average Rank over an Ensemble of Sub-samples (ARES)' makes clustering algorithms robust to data representation and enable them to detect varying density clusters. Our empirical results, obtained using three most widely used clustering algorithms-namely KMeans, DBSCAN, and DP (Density Peak)-across a wide range of real-world datasets, show that clustering after ARES transformation produces better and more consistent results.
Advances and Challenges in Meta-Learning: A Technical Review
Vettoruzzo, Anna, Bouguelia, Mohamed-Rafik, Vanschoren, Joaquin, Rögnvaldsson, Thorsteinn, Santosh, KC
Meta-learning empowers learning systems with the ability to acquire knowledge from multiple tasks, enabling faster adaptation and generalization to new tasks. This review provides a comprehensive technical overview of meta-learning, emphasizing its importance in real-world applications where data may be scarce or expensive to obtain. The paper covers the state-of-the-art meta-learning approaches and explores the relationship between meta-learning and multi-task learning, transfer learning, domain adaptation and generalization, self-supervised learning, personalized federated learning, and continual learning. By highlighting the synergies between these topics and the field of meta-learning, the paper demonstrates how advancements in one area can benefit the field as a whole, while avoiding unnecessary duplication of efforts. Additionally, the paper delves into advanced meta-learning topics such as learning from complex multi-modal task distributions, unsupervised meta-learning, learning to efficiently adapt to data distribution shifts, and continual meta-learning. Lastly, the paper highlights open problems and challenges for future research in the field. By synthesizing the latest research developments, this paper provides a thorough understanding of meta-learning and its potential impact on various machine learning applications. We believe that this technical overview will contribute to the advancement of meta-learning and its practical implications in addressing real-world problems.
Improved histogram-based anomaly detector with the extended principal component features
Aryal, Sunil, Baniya, Arbind Agrahari, Santosh, KC
In this era of big data, databases are growing rapidly in terms of the number of records. Fast automatic detection of anomalous records in these massive databases is a challenging task. Traditional distance based anomaly detectors are not applicable in these massive datasets. Recently, a simple but extremely fast anomaly detector using one-dimensional histograms has been introduced. The anomaly score of a data instance is computed as the product of the probability mass of histograms in each dimensions where it falls into. It is shown to produce competitive results compared to many state-of-the-art methods in many datasets. Because it assumes data features are independent of each other, it results in poor detection accuracy when there is correlation between features. To address this issue, we propose to increase the feature size by adding more features based on principal components. Our results show that using the original input features together with principal components improves the detection accuracy of histogram-based anomaly detector significantly without compromising much in terms of run-time.