Goto

Collaborating Authors

 Santos, Ricardo


Improving Representation Learning of Complex Critical Care Data with ICU-BERT

arXiv.org Artificial Intelligence

The multivariate, asynchronous nature of real-world clinical data, such as that generated in Intensive Care Units (ICUs), challenges traditional AI-based decision-support systems. These often assume data regularity and feature independence and frequently rely on limited data scopes and manual feature engineering. The potential of generative AI technologies has not yet been fully exploited to analyze clinical data. We introduce ICU-BERT, a transformer-based model pre-trained on the MIMIC-IV database using a multi-task scheme to learn robust representations of complex ICU data with minimal preprocessing. ICU-BERT employs a multi-token input strategy, incorporating dense embeddings from a biomedical Large Language Model to learn a generalizable representation of complex and multivariate ICU data. With an initial evaluation of five tasks and four additional ICU datasets, ICU-BERT results indicate that ICU-BERT either compares to or surpasses current performance benchmarks by leveraging fine-tuning. By integrating structured and unstructured data, ICU-BERT advances the use of foundational models in medical informatics, offering an adaptable solution for clinical decision support across diverse applications.


MERGE -- A Bimodal Dataset for Static Music Emotion Recognition

arXiv.org Artificial Intelligence

The Music Emotion Recognition (MER) field has seen steady developments in recent years, with contributions from feature engineering, machine learning, and deep learning. The landscape has also shifted from audio-centric systems to bimodal ensembles that combine audio and lyrics. However, a severe lack of public and sizeable bimodal databases has hampered the development and improvement of bimodal audio-lyrics systems. This article proposes three new audio, lyrics, and bimodal MER research datasets, collectively called MERGE, created using a semi-automatic approach. To comprehensively assess the proposed datasets and establish a baseline for benchmarking, we conducted several experiments for each modality, using feature engineering, machine learning, and deep learning methodologies. In addition, we propose and validate fixed train-validate-test splits. The obtained results confirm the viability of the proposed datasets, achieving the best overall result of 79.21% F1-score for bimodal classification using a deep neural network.