Goto

Collaborating Authors

 Sankaran, Anush


Deeplite Neutrino: An End-to-End Framework for Constrained Deep Learning Model Optimization

arXiv.org Artificial Intelligence

Designing deep learning-based solutions is becoming a race for training deeper models with a greater number of layers. While a large-size deeper model could provide competitive accuracy, it creates a lot of logistical challenges and unreasonable resource requirements during development and deployment. This has been one of the key reasons for deep learning models not being excessively used in various production environments, especially in edge devices. There is an immediate requirement for optimizing and compressing these deep learning models, to enable on-device intelligence. In this research, we introduce a black-box framework, Deeplite Neutrino for production-ready optimization of deep learning models. The framework provides an easy mechanism for the end-users to provide constraints such as a tolerable drop in accuracy or target size of the optimized models, to guide the whole optimization process. The framework is easy to include in an existing production pipeline and is available as a Python Package, supporting PyTorch and Tensorflow libraries. The optimization performance of the framework is shown across multiple benchmark datasets and popular deep learning models. Further, the framework is currently used in production and the results and testimonials from several clients are summarized.


"You might also like this model": Data Driven Approach for Recommending Deep Learning Models for Unknown Image Datasets

arXiv.org Machine Learning

For an unknown (new) classification dataset, choosing an appropriate deep learning architecture is often a recursive, time-taking, and laborious process. In this research, we propose a novel technique to recommend a suitable architecture from a repository of known models. Further, we predict the performance accuracy of the recommended architecture on the given unknown dataset, without the need for training the model. We propose a model encoder approach to learn a fixed length representation of deep learning architectures along with its hyperparameters, in an unsupervised fashion. We manually curate a repository of image datasets with corresponding known deep learning models and show that the predicted accuracy is a good estimator of the actual accuracy. We discuss the implications of the proposed approach for three benchmark images datasets and also the challenges in using the approach for text modality. To further increase the reproducibility of the proposed approach, the entire implementation is made publicly available along with the trained models.


Explaining Deep Learning Models using Causal Inference

arXiv.org Artificial Intelligence

Although deep learning models have been successfully applied to a variety of tasks, due to the millions of parameters, they are becoming increasingly opaque and complex. In order to establish trust for their widespread commercial use, it is important to formalize a principled framework to reason over these models. In this work, we use ideas from causal inference to describe a general framework to reason over CNN models. Specifically, we build a Structural Causal Model (SCM) as an abstraction over a specific aspect of the CNN. We also formulate a method to quantitatively rank the filters of a convolution layer according to their counterfactual importance. We illustrate our approach with popular CNN architectures such as LeNet5, VGG19, and ResNet32.


Democratization of Deep Learning Using DARVIZ

AAAI Conferences

With an abundance of research papers in deep learning, adoption and reproducibility of existing works becomes a challenge. To make a DL developer life easy, we propose a novel system, DARVIZ, to visually design a DL model using a drag-and-drop framework in an platform agnostic manner. The code could be automatically generated in both Caffe and Keras. DARVIZ could import (i) any existing Caffe code, or (ii) a research paper containing a DL design; extract the design, and present it in visual editor.


Hi, How Can I Help You?: Automating Enterprise IT Support Help Desks

AAAI Conferences

Question answering is one of the primary challenges of natural language understanding. In realizing such a system, providing complex long answers to questions is a challenging task as opposed to factoid answering as the former needs context disambiguation. The different methods explored in the literature can be broadly classified into three categories namely: 1) classification based, 2) knowledge graph based and 3) retrieval based. Individually, none of them address the need of an enterprise wide assistance system for an IT support and maintenance domain. In this domain, the variance of answers is large ranging from factoid to structured operating procedures; the knowledge is present across heterogeneous data sources like application specific documentation, ticket management systems and any single technique for a general purpose assistance is unable to scale for such a landscape. To address this, we have built a cognitive platform with capabilities adopted for this domain. Further, we have built a general purpose question answering system leveraging the platform that can be instantiated for multiple products, technologies in the support domain. The system uses a novel hybrid answering model that orchestrates across a deep learning classifier, a knowledge graph based context disambiguation module and a sophisticated bag-of-words search system. This orchestration performs context switching for a provided question and also does a smooth hand-off of the question to a human expert if none of the automated techniques can provide a confident answer. This system has been deployed across 675 internal enterprise IT support and maintenance projects.


Agent Assist: Automating Enterprise IT Support Help Desks

AAAI Conferences

In this paper, we present Agent Assist, a virtual assistant which helps IT support staff to resolve tickets faster. It is essentially a conversation system which provides procedural and often complex answers to queries. This system can ingest knowledge from various sources like application documentation, ticket management systems and knowledge transfer video recordings. It uses an ensemble of techniques like question classification, knowledge graph based disambiguation, information retrieval, etc., to provide quick and relevant solutions to problems from various technical domains and is currently being used in more than 650 projects within IBM.


DLPaper2Code: Auto-Generation of Code From Deep Learning Research Papers

AAAI Conferences

With an abundance of research papers in deep learning, reproducibility or adoption of the existing works becomes a challenge. This is due to the lack of open source implementations provided by the authors. Even if the source code is available, then re-implementing research papers in a different library is a daunting task. To address these challenges, we propose a novel extensible approach, DLPaper2Code, to extract and understand deep learning design flow diagrams and tables available in a research paper and convert them to an abstract computational graph. The extracted computational graph is then converted into execution ready source code in both Keras and Caffe, in real-time. An arXiv-like website is created where the automatically generated designs is made publicly available for 5,000 research papers. The generated designs could be rated and edited using an intuitive drag-and-drop UI framework in a crowd sourced manner. To evaluate our approach, we create a simulated dataset with over 216,000 valid deep learning design flow diagrams using a manually defined grammar. Experiments on the simulated dataset show that the proposed framework provide more than 93% accuracy in flow diagram content extraction.


DLPaper2Code: Auto-generation of Code from Deep Learning Research Papers

arXiv.org Machine Learning

With an abundance of research papers in deep learning, reproducibility or adoption of the existing works becomes a challenge. This is due to the lack of open source implementations provided by the authors. Further, re-implementing research papers in a different library is a daunting task. To address these challenges, we propose a novel extensible approach, DLPaper2Code, to extract and understand deep learning design flow diagrams and tables available in a research paper and convert them to an abstract computational graph. The extracted computational graph is then converted into execution ready source code in both Keras and Caffe, in real-time. An arXiv-like website is created where the automatically generated designs is made publicly available for 5,000 research papers. The generated designs could be rated and edited using an intuitive drag-and-drop UI framework in a crowdsourced manner. To evaluate our approach, we create a simulated dataset with over 216,000 valid design visualizations using a manually defined grammar. Experiments on the simulated dataset show that the proposed framework provide more than $93\%$ accuracy in flow diagram content extraction.