Goto

Collaborating Authors

 Sanghack Lee



Transportability from Multiple Environments with Limited Experiments

Neural Information Processing Systems

This paper considers the problem of transferring experimental findings learned from multiple heterogeneous domains to a target domain, in which only limited experiments can be performed. We reduce questions of transportability from multiple domains and with limited scope to symbolic derivations in the causal calculus, thus extending the original setting of transportability introduced in [1], which assumes only one domain with full experimental information available. We further provide different graphical and algorithmic conditions for computing the transport formula in this setting, that is, a way of fusing the observational and experimental information scattered throughout different domains to synthesize a consistent estimate of the desired effects in the target domain. We also consider the issue of minimizing the variance of the produced estimand in order to increase power.


Structural Causal Bandits: Where to Intervene?

Neural Information Processing Systems

We study the problem of identifying the best action in a sequential decisionmaking setting when the reward distributions of the arms exhibit a non-trivial dependence structure, which is governed by the underlying causal model of the domain where the agent is deployed.


Transportability from Multiple Environments with Limited Experiments

Neural Information Processing Systems

This paper considers the problem of transferring experimental findings learned from multiple heterogeneous domains to a target domain, in which only limited experiments can be performed. We reduce questions of transportability from multiple domains and with limited scope to symbolic derivations in the causal calculus, thus extending the original setting of transportability introduced in [1], which assumes only one domain with full experimental information available. We further provide different graphical and algorithmic conditions for computing the transport formula in this setting, that is, a way of fusing the observational and experimental information scattered throughout different domains to synthesize a consistent estimate of the desired effects in the target domain. We also consider the issue of minimizing the variance of the produced estimand in order to increase power.