Goto

Collaborating Authors

 Sang, Tong


PMIC: Improving Multi-Agent Reinforcement Learning with Progressive Mutual Information Collaboration

arXiv.org Artificial Intelligence

Learning to collaborate is critical in Multi-Agent Reinforcement Learning (MARL). Previous works promote collaboration by maximizing the correlation of agents' behaviors, which is typically characterized by Mutual Information (MI) in different forms. However, we reveal sub-optimal collaborative behaviors also emerge with strong correlations, and simply maximizing the MI can, surprisingly, hinder the learning towards better collaboration. To address this issue, we propose a novel MARL framework, called Progressive Mutual Information Collaboration (PMIC), for more effective MI-driven collaboration. PMIC uses a new collaboration criterion measured by the MI between global states and joint actions. Based on this criterion, the key idea of PMIC is maximizing the MI associated with superior collaborative behaviors and minimizing the MI associated with inferior ones. The two MI objectives play complementary roles by facilitating better collaborations while avoiding falling into sub-optimal ones. Experiments on a wide range of MARL benchmarks show the superior performance of PMIC compared with other algorithms.


Uncertainty-aware Low-Rank Q-Matrix Estimation for Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Value estimation is one key problem in Reinforcement Learning. Albeit many successes have been achieved by Deep Reinforcement Learning (DRL) in different fields, the underlying structure and learning dynamics of value function, especially with complex function approximation, are not fully understood. In this paper, we report that decreasing rank of $Q$-matrix widely exists during learning process across a series of continuous control tasks for different popular algorithms. We hypothesize that the low-rank phenomenon indicates the common learning dynamics of $Q$-matrix from stochastic high dimensional space to smooth low dimensional space. Moreover, we reveal a positive correlation between value matrix rank and value estimation uncertainty. Inspired by above evidence, we propose a novel Uncertainty-Aware Low-rank Q-matrix Estimation (UA-LQE) algorithm as a general framework to facilitate the learning of value function. Through quantifying the uncertainty of state-action value estimation, we selectively erase the entries of highly uncertain values in state-action value matrix and conduct low-rank matrix reconstruction for them to recover their values. Such a reconstruction exploits the underlying structure of value matrix to improve the value approximation, thus leading to a more efficient learning process of value function. In the experiments, we evaluate the efficacy of UA-LQE in several representative OpenAI MuJoCo continuous control tasks.