Goto

Collaborating Authors

 Sang, Shengtian


Registration-Enhanced Segmentation Method for Prostate Cancer in Ultrasound Images

arXiv.org Artificial Intelligence

Prostate cancer is a major cause of cancer-related deaths in men, where early detection greatly improves survival rates. Although MRI-TRUS fusion biopsy offers superior accuracy by combining MRI's detailed visualization with TRUS's real-time guidance, it is a complex and time-intensive procedure that relies heavily on manual annotations, leading to potential errors. To address these challenges, we propose a fully automatic MRI-TRUS fusion-based segmentation method that identifies prostate tumors directly in TRUS images without requiring manual annotations. Unlike traditional multimodal fusion approaches that rely on naive data concatenation, our method integrates a registration-segmentation framework to align and leverage spatial information between MRI and TRUS modalities. This alignment enhances segmentation accuracy and reduces reliance on manual effort. Our approach was validated on a dataset of 1,747 patients from Stanford Hospital, achieving an average Dice coefficient of 0.212, outperforming TRUS-only (0.117) and naive MRI-TRUS fusion (0.132) methods, with significant improvements (p $<$ 0.01). This framework demonstrates the potential for reducing the complexity of prostate cancer diagnosis and provides a flexible architecture applicable to other multimodal medical imaging tasks.


Multimodal MRI-Ultrasound AI for Prostate Cancer Detection Outperforms Radiologist MRI Interpretation: A Multi-Center Study

arXiv.org Artificial Intelligence

Pre-biopsy magnetic resonance imaging (MRI) is increasingly used to target suspicious prostate lesions. This has led to artificial intelligence (AI) applications improving MRI-based detection of clinically significant prostate cancer (CsPCa). However, MRI-detected lesions must still be mapped to transrectal ultrasound (TRUS) images during biopsy, which results in missing CsPCa. This study systematically evaluates a multimodal AI framework integrating MRI and TRUS image sequences to enhance CsPCa identification. The study included 3110 patients from three cohorts across two institutions who underwent prostate biopsy. The proposed framework, based on the 3D UNet architecture, was evaluated on 1700 test cases, comparing performance to unimodal AI models that use either MRI or TRUS alone. Additionally, the proposed model was compared to radiologists in a cohort of 110 patients. The multimodal AI approach achieved superior sensitivity (80%) and Lesion Dice (42%) compared to unimodal MRI (73%, 30%) and TRUS models (49%, 27%). Compared to radiologists, the multimodal model showed higher specificity (88% vs. 78%) and Lesion Dice (38% vs. 33%), with equivalent sensitivity (79%). Our findings demonstrate the potential of multimodal AI to improve CsPCa lesion targeting during biopsy and treatment planning, surpassing current unimodal models and radiologists; ultimately improving outcomes for prostate cancer patients.


Mask Enhanced Deeply Supervised Prostate Cancer Detection on B-mode Micro-Ultrasound

arXiv.org Artificial Intelligence

Prostate cancer is a leading cause of cancer-related deaths among men. The recent development of high frequency, micro-ultrasound imaging offers improved resolution compared to conventional ultrasound and potentially a better ability to differentiate clinically significant cancer from normal tissue. However, the features of prostate cancer remain subtle, with ambiguous borders with normal tissue and large variations in appearance, making it challenging for both machine learning and humans to localize it on micro-ultrasound images. We propose a novel Mask Enhanced Deeply-supervised Micro-US network, termed MedMusNet, to automatically and more accurately segment prostate cancer to be used as potential targets for biopsy procedures. MedMusNet leverages predicted masks of prostate cancer to enforce the learned features layer-wisely within the network, reducing the influence of noise and improving overall consistency across frames. MedMusNet successfully detected 76% of clinically significant cancer with a Dice Similarity Coefficient of 0.365, significantly outperforming the baseline Swin-M2F in specificity and accuracy (Wilcoxon test, Bonferroni correction, p-value<0.05). While the lesion-level and patient-level analyses showed improved performance compared to human experts and different baseline, the improvements did not reach statistical significance, likely on account of the small cohort. We have presented a novel approach to automatically detect and segment clinically significant prostate cancer on B-mode micro-ultrasound images. Our MedMusNet model outperformed other models, surpassing even human experts. These preliminary results suggest the potential for aiding urologists in prostate cancer diagnosis via biopsy and treatment decision-making.