Sang, Lei
A Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain Recommendation
Wang, Li, Sang, Lei, Zhang, Quangui, Wu, Qiang, Xu, Min
Cross-domain recommendation (CDR) aims to enhance recommendation accuracy in a target domain with sparse data by leveraging rich information in a source domain, thereby addressing the data-sparsity problem. Some existing CDR methods highlight the advantages of extracting domain-common and domain-specific features to learn comprehensive user and item representations. However, these methods can't effectively disentangle these components as they often rely on simple user-item historical interaction information (such as ratings, clicks, and browsing), neglecting the rich multi-modal features. Additionally, they don't protect user-sensitive data from potential leakage during knowledge transfer between domains. To address these challenges, we propose a Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain Recommendation, called P2M2-CDR. Specifically, we first design a multi-modal disentangled encoder that utilizes multi-modal information to disentangle more informative domain-common and domain-specific embeddings. Furthermore, we introduce a privacy-preserving decoder to mitigate user privacy leakage during knowledge transfer. Local differential privacy (LDP) is utilized to obfuscate the disentangled embeddings before inter-domain exchange, thereby enhancing privacy protection. To ensure both consistency and differentiation among these obfuscated disentangled embeddings, we incorporate contrastive learning-based domain-inter and domain-intra losses. Extensive Experiments conducted on four real-world datasets demonstrate that P2M2-CDR outperforms other state-of-the-art single-domain and cross-domain baselines.
AAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding
Sang, Lei, Xu, Min, Qian, Shengsheng, Wu, Xindong
Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a "one-size-fits-all" approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding.