Goto

Collaborating Authors

 Sanborn, Adam


Mental Sampling in Multimodal Representations

Neural Information Processing Systems

Both resources in the natural environment and concepts in a semantic space are distributed "patchily", with large gaps in between the patches. To describe people's internal and external foraging behavior, various random walk models have been proposed. In particular, internal foraging has been modeled as sampling: in order to gather relevant information for making a decision, people draw samples from a mental representation using random-walk algorithms such as Markov chain Monte Carlo (MCMC). However, two common empirical observations argue against people using simple sampling algorithms such as MCMC for internal foraging. First, the distance between samples is often best described by a Levy flight distribution: the probability of the distance between two successive locations follows a power-law on the distances. Second, humans and other animals produce long-range, slowly decaying autocorrelations characterized as 1/f-like fluctuations, instead of the 1/f^2 fluctuations produced by random walks. We propose that mental sampling is not done by simple MCMC, but is instead adapted to multimodal representations and is implemented by Metropolis-coupled Markov chain Monte Carlo (MC3), one of the first algorithms developed for sampling from multimodal distributions. MC3 involves running multiple Markov chains in parallel but with target distributions of different temperatures, and it swaps the states of the chains whenever a better location is found. Heated chains more readily traverse valleys in the probability landscape to propose moves to far-away peaks, while the colder chains make the local steps that explore the current peak or patch. We show that MC3 generates distances between successive samples that follow a Levy flight distribution and produce 1/f-like autocorrelations, providing a single mechanistic account of these two puzzling empirical phenomena of internal foraging.


Mental Sampling in Multimodal Representations

Neural Information Processing Systems

Both resources in the natural environment and concepts in a semantic space are distributed "patchily", with large gaps in between the patches. To describe people's internal and external foraging behavior, various random walk models have been proposed. In particular, internal foraging has been modeled as sampling: in order to gather relevant information for making a decision, people draw samples from a mental representation using random-walk algorithms such as Markov chain Monte Carlo (MCMC). However, two common empirical observations argue against people using simple sampling algorithms such as MCMC for internal foraging. First, the distance between samples is often best described by a Levy flight distribution: the probability of the distance between two successive locations follows a power-law on the distances. Second, humans and other animals produce long-range, slowly decaying autocorrelations characterized as 1/f-like fluctuations, instead of the 1/f^2 fluctuations produced by random walks. We propose that mental sampling is not done by simple MCMC, but is instead adapted to multimodal representations and is implemented by Metropolis-coupled Markov chain Monte Carlo (MC3), one of the first algorithms developed for sampling from multimodal distributions. MC3 involves running multiple Markov chains in parallel but with target distributions of different temperatures, and it swaps the states of the chains whenever a better location is found. Heated chains more readily traverse valleys in the probability landscape to propose moves to far-away peaks, while the colder chains make the local steps that explore the current peak or patch. We show that MC3 generates distances between successive samples that follow a Levy flight distribution and produce 1/f-like autocorrelations, providing a single mechanistic account of these two puzzling empirical phenomena of internal foraging.


Hierarchical Learning of Dimensional Biases in Human Categorization

Neural Information Processing Systems

Existing models of categorization typically represent to-be-classified items as points in a multidimensional space. While from a mathematical point of view, an infinite number of basis sets can be used to represent points in this space, the choice of basis set is psychologically crucial. People generally choose the same basis dimensions, and have a strong preference to generalize along the axes of these dimensions, but not diagonally". What makes some choices of dimension special? We explore the idea that the dimensions used by people echo the natural variation in the environment. Specifically, we present a rational model that does not assume dimensions, but learns the same type of dimensional generalizations that people display. This bias is shaped by exposing the model to many categories with a structure hypothesized to be like those which children encounter. Our model can be viewed as a type of transformed Dirichlet process mixture model, where it is the learning of the base distribution of the Dirichlet process which allows dimensional generalization.The learning behaviour of our model captures the developmental shift from roughly "isotropic" for children to the axis-aligned generalization that adults show."