Goto

Collaborating Authors

 Saminger-Platz, Susanne


Online Learning Algorithms in Hilbert Spaces with $\beta-$ and $\phi-$Mixing Sequences

arXiv.org Machine Learning

In this paper, we study an online algorithm in a reproducing kernel Hilbert spaces (RKHS) based on a class of dependent processes, called the mixing process. For such a process, the degree of dependence is measured by various mixing coefficients. As a representative example, we analyze a strictly stationary Markov chain, where the dependence structure is characterized by the \(\beta-\) and \(\phi-\)mixing coefficients. For these dependent samples, we derive nearly optimal convergence rates. Our findings extend existing error bounds for i.i.d. observations, demonstrating that the i.i.d. case is a special instance of our framework. Moreover, we explicitly account for an additional factor introduced by the dependence structure in the Markov chain.


Upper Bounds for Learning in Reproducing Kernel Hilbert Spaces for Non IID Samples

arXiv.org Machine Learning

In this paper, we study a Markov chain-based stochastic gradient algorithm in general Hilbert spaces, aiming to approximate the optimal solution of a quadratic loss function. We establish probabilistic upper bounds on its convergence. We further extend these results to an online regularized learning algorithm in reproducing kernel Hilbert spaces, where the samples are drawn along a Markov chain trajectory hence the samples are of the non i.i.d.


Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment

arXiv.org Machine Learning

A novel approach for unsupervised domain adaptation for neural networks is proposed that relies on a metric-based regularization of the learning process. The metric-based regularization aims at domain-invariant latent feature representations by means of maximizing the similarity between domain-specific activation distributions. The proposed metric results from modifying an integral probability metric in a way such that it becomes translation-invariant on a polynomial reproducing kernel Hilbert space. The metric has an intuitive interpretation in the dual space as sum of differences of central moments of the corresponding activation distributions. As demonstrated by an analysis on standard benchmark datasets for sentiment analysis and object recognition the outlined approach shows more robustness \wrt parameter changes than state-of-the-art approaches while achieving even higher classification accuracies.


Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning

arXiv.org Machine Learning

The learning of domain-invariant representations in the context of domain adaptation with neural networks is considered. We propose a new regularization method that minimizes the discrepancy between domain-specific latent feature representations directly in the hidden activation space. Although some standard distribution matching approaches exist that can be interpreted as the matching of weighted sums of moments, e.g. Maximum Mean Discrepancy (MMD), an explicit order-wise matching of higher order moments has not been considered before. We propose to match the higher order central moments of probability distributions by means of order-wise moment differences. Our model does not require computationally expensive distance and kernel matrix computations. We utilize the equivalent representation of probability distributions by moment sequences to define a new distance function, called Central Moment Discrepancy (CMD). We prove that CMD is a metric on the set of probability distributions on a compact interval. We further prove that convergence of probability distributions on compact intervals w.r.t. the new metric implies convergence in distribution of the respective random variables. We test our approach on two different benchmark data sets for object recognition (Office) and sentiment analysis of product reviews (Amazon reviews). CMD achieves a new state-of-the-art performance on most domain adaptation tasks of Office and outperforms networks trained with MMD, Variational Fair Autoencoders and Domain Adversarial Neural Networks on Amazon reviews. In addition, a post-hoc parameter sensitivity analysis shows that the new approach is stable w.r.t. parameter changes in a certain interval. The source code of the experiments is publicly available.