Goto

Collaborating Authors

 Samet, Nermin


Valeo4Cast: A Modular Approach to End-to-End Forecasting

arXiv.org Artificial Intelligence

Motion forecasting is crucial in autonomous driving systems to anticipate the future trajectories of surrounding agents such as pedestrians, vehicles, and traffic signals. In end-to-end forecasting, the model must jointly detect from sensor data (cameras or LiDARs) the position and past trajectories of the different elements of the scene and predict their future location. We depart from the current trend of tackling this task via end-to-end training from perception to forecasting and we use a modular approach instead. Following a recent study, we individually build and train detection, tracking, and forecasting modules. We then only use consecutive finetuning steps to integrate the modules better and alleviate compounding errors. Our study reveals that this simple yet effective approach significantly improves performance on the end-to-end forecasting benchmark. Consequently, our solution ranks first in the Argoverse 2 end-to-end Forecasting Challenge held at CVPR 2024 Workshop on Autonomous Driving (WAD), with 63.82 mAPf. We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up. This remarkable performance in forecasting can be explained by our modular paradigm, which integrates finetuning strategies and significantly outperforms the end-to-end-trained counterparts.


ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation

arXiv.org Artificial Intelligence

Monocular 3D human pose estimation (3D-HPE) is an inherently ambiguous task, as a 2D pose in an image might originate from different possible 3D poses. Yet, most 3D-HPE methods rely on regression models, which assume a one-to-one mapping between inputs and outputs. In this work, we provide theoretical and empirical evidence that, because of this ambiguity, common regression models are bound to predict topologically inconsistent poses, and that traditional evaluation metrics, such as the MPJPE, P-MPJPE and PCK, are insufficient to assess this aspect. As a solution, we propose ManiPose, a novel manifold-constrained multi-hypothesis model capable of proposing multiple candidate 3D poses for each 2D input, together with their corresponding plausibility. Unlike previous multi-hypothesis approaches, our solution is completely supervised and does not rely on complex generative models, thus greatly facilitating its training and usage. Furthermore, by constraining our model to lie within the human pose manifold, we can guarantee the consistency of all hypothetical poses predicted with our approach, which was not possible in previous works. We illustrate the usefulness of ManiPose in a synthetic 1D-to-2D lifting setting and demonstrate on real-world datasets that it outperforms state-of-the-art models in pose consistency by a large margin, while still reaching competitive MPJPE performance.