Goto

Collaborating Authors

 Samanta, Suranjana


ITBench: Evaluating AI Agents across Diverse Real-World IT Automation Tasks

arXiv.org Artificial Intelligence

Realizing the vision of using AI agents to automate critical IT tasks depends on the ability to measure and understand effectiveness of proposed solutions. We introduce ITBench, a framework that offers a systematic methodology for benchmarking AI agents to address real-world IT automation tasks. Our initial release targets three key areas: Site Reliability Engineering (SRE), Compliance and Security Operations (CISO), and Financial Operations (FinOps). The design enables AI researchers to understand the challenges and opportunities of AI agents for IT automation with push-button workflows and interpretable metrics. ITBench includes an initial set of 94 real-world scenarios, which can be easily extended by community contributions. Our results show that agents powered by state-of-the-art models resolve only 13.8% of SRE scenarios, 25.2% of CISO scenarios, and 0% of FinOps scenarios. We expect ITBench to be a key enabler of AI-driven IT automation that is correct, safe, and fast.


ScriptSmith: A Unified LLM Framework for Enhancing IT Operations via Automated Bash Script Generation, Assessment, and Refinement

arXiv.org Artificial Intelligence

In the rapidly evolving landscape of site reliability engineering (SRE), the demand for efficient and effective solutions to manage and resolve issues in site and cloud applications is paramount. This paper presents an innovative approach to action automation using large language models (LLMs) for script generation, assessment, and refinement. By leveraging the capabilities of LLMs, we aim to significantly reduce the human effort involved in writing and debugging scripts, thereby enhancing the productivity of SRE teams. Our experiments focus on Bash scripts, a commonly used tool in SRE, and involve the CodeSift dataset of 100 tasks and the InterCode dataset of 153 tasks. The results show that LLMs can automatically assess and refine scripts efficiently, reducing the need for script validation in an execution environment. Results demonstrate that the framework shows an overall improvement of 7-10% in script generation.