Salwala, Dhaval
Usage Governance Advisor: from Intent to AI Governance
Daly, Elizabeth M., Rooney, Sean, Tirupathi, Seshu, Garces-Erice, Luis, Vejsbjerg, Inge, Bagehorn, Frank, Salwala, Dhaval, Giblin, Christopher, Wolf-Bauwens, Mira L., Giurgiu, Ioana, Hind, Michael, Urbanetz, Peter
Evaluating the safety of AI Systems is a pressing concern for organizations deploying them. In addition to the societal damage done by the lack of fairness of those systems, deployers are concerned about the legal repercussions and the reputational damage incurred by the use of models that are unsafe. Safety covers both what a model does; e.g., can it be used to reveal personal information from its training set, and how a model was built; e.g., was it only trained on licensed data sets. Determining the safety of an AI system requires gathering information from a wide set of heterogeneous sources including safety benchmarks and technical documentation for the set of models used in that system. In addition, responsible use is encouraged through mechanisms that advise and help the user to take mitigating actions where safety risks are detected. We present Usage Governance Advisor which creates semi-structured governance information, identifies and prioritizes risks according to the intended use case, recommends appropriate benchmarks and risk assessments and importantly proposes mitigation strategies and actions.
Knowledge Graph Driven Approach to Represent Video Streams for Spatiotemporal Event Pattern Matching in Complex Event Processing
Yadav, Piyush, Salwala, Dhaval, Curry, Edward
Complex Event Processing (CEP) is an event processing paradigm to perform real-time analytics over streaming data and match high-level event patterns. Presently, CEP is limited to process structured data stream. Video streams are complicated due to their unstructured data model and limit CEP systems to perform matching over them. This work introduces a graph-based structure for continuous evolving video streams, which enables the CEP system to query complex video event patterns. We propose the Video Event Knowledge Graph (VEKG), a graph driven representation of video data. VEKG models video objects as nodes and their relationship interaction as edges over time and space. It creates a semantic knowledge representation of video data derived from the detection of high-level semantic concepts from the video using an ensemble of deep learning models. A CEP-based state optimization - VEKG-Time Aggregated Graph (VEKG-TAG) is proposed over VEKG representation for faster event detection. VEKG-TAG is a spatiotemporal graph aggregation method that provides a summarized view of the VEKG graph over a given time length. We defined a set of nine event pattern rules for two domains (Activity Recognition and Traffic Management), which act as a query and applied over VEKG graphs to discover complex event patterns. To show the efficacy of our approach, we performed extensive experiments over 801 video clips across 10 datasets. The proposed VEKG approach was compared with other state-of-the-art methods and was able to detect complex event patterns over videos with F-Score ranging from 0.44 to 0.90. In the given experiments, the optimized VEKG-TAG was able to reduce 99% and 93% of VEKG nodes and edges, respectively, with 5.19X faster search time, achieving sub-second median latency of 4-20 milliseconds.
Traffic Prediction Framework for OpenStreetMap using Deep Learning based Complex Event Processing and Open Traffic Cameras
Yadav, Piyush, Sarkar, Dipto, Salwala, Dhaval, Curry, Edward
Displaying near-real-time traffic information is a useful feature of digital navigation maps. However, most commercial providers rely on privacy-compromising measures such as deriving location information from cellphones to estimate traffic. The lack of an open-source traffic estimation method using open data platforms is a bottleneck for building sophisticated navigation services on top of OpenStreetMap (OSM). We propose a deep learning-based Complex Event Processing (CEP) method that relies on publicly available video camera streams for traffic estimation. The proposed framework performs near-real-time object detection and objects property extraction across camera clusters in parallel to derive multiple measures related to traffic with the results visualized on OpenStreetMap. The estimation of object properties (e.g. vehicle speed, count, direction) provides multidimensional data that can be leveraged to create metrics and visualization for congestion beyond commonly used density-based measures. Our approach couples both flow and count measures during interpolation by considering each vehicle as a sample point and their speed as weight. We demonstrate multidimensional traffic metrics (e.g. flow rate, congestion estimation) over OSM by processing 22 traffic cameras from London streets. The system achieves a near-real-time performance of 1.42 seconds median latency and an average F-score of 0.80.