Salinas, Eduardo
Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks
Fourney, Adam, Bansal, Gagan, Mozannar, Hussein, Tan, Cheng, Salinas, Eduardo, Erkang, null, Zhu, null, Niedtner, Friederike, Proebsting, Grace, Bassman, Griffin, Gerrits, Jack, Alber, Jacob, Chang, Peter, Loynd, Ricky, West, Robert, Dibia, Victor, Awadallah, Ahmed, Kamar, Ece, Hosn, Rafah, Amershi, Saleema
Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one
Aligning LLM Agents by Learning Latent Preference from User Edits
Gao, Ge, Taymanov, Alexey, Salinas, Eduardo, Mineiro, Paul, Misra, Dipendra
We study interactive learning of LLM-based language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data. The inferred user preference descriptions are used to define prompts for generating responses in the future. This avoids fine-tuning the agent, which is costly, challenging to scale with the number of users, and may even degrade its performance on other tasks. Furthermore, learning descriptive preference improves interpretability, allowing the user to view and modify the learned preference. However, user preference can be complex, subtle, and vary based on context, making it challenging to learn. To address this, we propose a simple yet effective algorithm named CIPHER that leverages the LLM to infer the user preference for a given context based on user edits. In the future, CIPHER retrieves inferred preferences from the k-closest contexts in the history, and forms an aggregate preference for response generation. We introduce two interactive environments -- summarization and email writing, and use a GPT-4 simulated user for evaluation. On both tasks, CIPHER outperforms several baselines by achieving the lowest edit distance cost while only having a small overhead in LLM query cost. Our analysis reports that user preferences learned by CIPHER show significant similarity to the ground truth latent preferences.